IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-023-05468-2.html
   My bibliography  Save this article

Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography

Author

Listed:
  • Jaeseung Baek

    (Northern Michigan University)

  • Myong K. Jeong

    (Rutgers University)

  • Elsayed A. Elsayed

    (Rutgers University)

Abstract

Anomaly detection of three-dimensional (3D) topographic data is a challenging problem in spatial data analysis. In this paper, we investigate spatial patterns of 3D surface data that exhibit multiple in-control modes. In complex manufacturing processes, surfaces of final products could contain different topographic features from one in-control surface to another, thus making it difficult to monitor the surface with existing approaches, which rely on the assumption of the presence of single mode surface topography. We propose a novel anomaly detection approach for monitoring local topographic variations in the presence of multimode surface topography. We present a binarization model to capture the generic behavior of the multimode surfaces and enhance the representation of the surface. To systematically monitor the surface, we introduce a new probabilistic distance measure (PDM) that quantifies the similarity of spatial patterns between two binarized surfaces. The proposed PDM takes advantage of identifying local variations by utilizing the order neighbor statistics, which captures the local property on the surface. Experimental results with numerical simulation data and real-life paper surface data are provided to demonstrate the effectiveness of the proposed approach.

Suggested Citation

  • Jaeseung Baek & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography," Annals of Operations Research, Springer, vol. 341(1), pages 173-195, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05468-2
    DOI: 10.1007/s10479-023-05468-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05468-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05468-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05468-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.