IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-023-05468-2.html
   My bibliography  Save this article

Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography

Author

Listed:
  • Jaeseung Baek

    (Northern Michigan University)

  • Myong K. Jeong

    (Rutgers University)

  • Elsayed A. Elsayed

    (Rutgers University)

Abstract

Anomaly detection of three-dimensional (3D) topographic data is a challenging problem in spatial data analysis. In this paper, we investigate spatial patterns of 3D surface data that exhibit multiple in-control modes. In complex manufacturing processes, surfaces of final products could contain different topographic features from one in-control surface to another, thus making it difficult to monitor the surface with existing approaches, which rely on the assumption of the presence of single mode surface topography. We propose a novel anomaly detection approach for monitoring local topographic variations in the presence of multimode surface topography. We present a binarization model to capture the generic behavior of the multimode surfaces and enhance the representation of the surface. To systematically monitor the surface, we introduce a new probabilistic distance measure (PDM) that quantifies the similarity of spatial patterns between two binarized surfaces. The proposed PDM takes advantage of identifying local variations by utilizing the order neighbor statistics, which captures the local property on the surface. Experimental results with numerical simulation data and real-life paper surface data are provided to demonstrate the effectiveness of the proposed approach.

Suggested Citation

  • Jaeseung Baek & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography," Annals of Operations Research, Springer, vol. 341(1), pages 173-195, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05468-2
    DOI: 10.1007/s10479-023-05468-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05468-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05468-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linmiao Zhang & Kaibo Wang & Nan Chen, 2016. "Monitoring wafers’ geometric quality using an additive Gaussian process model," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 1-15, January.
    2. Prahalad K. Rao & Omer F. Beyca & Zhenyu (James) Kong & Satish T. S. Bukkapatnam & Kenneth E. Case & Ranga Komanduri, 2015. "A graph-theoretic approach for quantification of surface morphology variation and its application to chemical mechanical planarization process," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1088-1111, October.
    3. Lian Duan & Lida Xu & Ying Liu & Jun Lee, 2009. "Cluster-based outlier detection," Annals of Operations Research, Springer, vol. 168(1), pages 151-168, April.
    4. Ali Tosyali & Jinho Kim & Jeongsub Choi & Yunyi Kang & Myong K. Jeong, 2020. "New node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networks," Annals of Operations Research, Springer, vol. 288(1), pages 457-474, May.
    5. Yuxin Zhao & Shuai Chang & Chang Liu, 2015. "Multifractal theory with its applications in data management," Annals of Operations Research, Springer, vol. 234(1), pages 133-150, November.
    6. Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
    7. Jaeseung Baek & Myong K. Jeong & Elsayed A. Elsayed, 2023. "Monitoring variations in multimode surface topography," International Journal of Production Research, Taylor & Francis Journals, vol. 61(4), pages 1129-1145, February.
    8. Shannon M. Fast & Louis Kim & Emily L. Cohn & Sumiko R. Mekaru & John S. Brownstein & Natasha Markuzon, 2018. "Predicting social response to infectious disease outbreaks from internet-based news streams," Annals of Operations Research, Springer, vol. 263(1), pages 551-564, April.
    9. Anh Tuan Bui & Daniel W. Apley, 2022. "Robust monitoring of stochastic textured surfaces," International Journal of Production Research, Taylor & Francis Journals, vol. 60(16), pages 5071-5086, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ja’far Dehghanpour & Nezam Mahdavi-Amiri, 2024. "Orthogonal nonnegative matrix factorization problems for clustering: A new formulation and a competitive algorithm," Annals of Operations Research, Springer, vol. 339(3), pages 1481-1497, August.
    2. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.
    3. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    4. Marek Śmieja & Magdalena Wiercioch, 2017. "Constrained clustering with a complex cluster structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 493-518, September.
    5. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    6. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
    7. Gergo Pinter & Imre Felde & Amir Mosavi & Pedram Ghamisi & Richard Gloaguen, 2020. "COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    9. Alexandra CERNIAN & Dorin CARSTOIU & Adriana OLTEANU & Valentin SGARCIU, 2016. "Assessing the Performance of Compression Based Clustering for Text Mining," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 197-210.
    10. Andrea Flori & Simone Giansante & Claudia Girardone & Fabio Pammolli, 2021. "Banks’ business strategies on the edge of distress," Annals of Operations Research, Springer, vol. 299(1), pages 481-530, April.
    11. Ali Tosyali & Behnam Tavakkol, 2024. "A node-based index for clustering validation of graph data," Annals of Operations Research, Springer, vol. 341(1), pages 197-221, October.
    12. Chenang Liu & Rongxuan Raphael Wang & Ian Ho & Zhenyu James Kong & Christopher Williams & Suresh Babu & Chase Joslin, 2023. "Toward online layer-wise surface morphology measurement in additive manufacturing using a deep learning-based approach," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2673-2689, August.
    13. Philippe Bernard & Najat El Mekkaoui De Freitas & Bertrand B. Maillet, 2022. "A financial fraud detection indicator for investors: an IDeA," Annals of Operations Research, Springer, vol. 313(2), pages 809-832, June.
    14. Aielli, Gian Piero & Caporin, Massimiliano, 2013. "Fast clustering of GARCH processes via Gaussian mixture models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 205-222.
    15. Roy Cerqueti & Viviana Fanelli, 2021. "Long memory and crude oil’s price predictability," Annals of Operations Research, Springer, vol. 299(1), pages 895-906, April.
    16. Ali Tosyali & Jinho Kim & Jeongsub Choi & Yunyi Kang & Myong K. Jeong, 2020. "New node anomaly detection algorithm based on nonnegative matrix factorization for directed citation networks," Annals of Operations Research, Springer, vol. 288(1), pages 457-474, May.
    17. Hae-Sang Park & Jeonghwa Lee & Chi-Hyuck Jun, 2014. "Clustering noise-included data by controlling decision errors," Annals of Operations Research, Springer, vol. 216(1), pages 129-144, May.
    18. Farnè, Matteo & Vouldis, Angelos T., 2018. "A methodology for automised outlier detection in high-dimensional datasets: an application to euro area banks' supervisory data," Working Paper Series 2171, European Central Bank.
    19. Serge Nyawa & Dieudonné Tchuente & Samuel Fosso-Wamba, 2024. "COVID-19 vaccine hesitancy: a social media analysis using deep learning," Annals of Operations Research, Springer, vol. 339(1), pages 477-515, August.
    20. Sameer Kumar & Chong Xu & Nidhi Ghildayal & Charu Chandra & Muer Yang, 2022. "Social media effectiveness as a humanitarian response to mitigate influenza epidemic and COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 823-851, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05468-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.