IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i7d10.1007_s10845-022-01991-4.html
   My bibliography  Save this article

Automated manufacturability analysis in smart manufacturing systems: a signature mapping method for product-centered digital twins

Author

Listed:
  • Kaishu Xia

    (University of South Carolina)

  • Thorsten Wuest

    (West Virginia University)

  • Ramy Harik

    (University of South Carolina)

Abstract

Developing affordable and customizable cyber-physical production system and Digital Twin (DT) implementations infuses new vitality for current Industry 4.0 and Smart Manufacturing initiatives. The ability to precisely address material handling processes for manufacturability analysis further connects the physical and cyber components of today’s smart manufacturing systems. In this work, we propose a product-centered signature mapping approach to automated digital twinning featuring a hybrid implementation of smart sensing, signature-based feature extractor, and knowledge taxonomy. First, we integrate 3D scanning and surface reconstruction at to implement shape retrieval from both the virtual environment (from Computer-Aided Engineering data) and the real-world production environment (from scanned point cloud frames). Second, Shape Terra, an algorithm for intrinsic curvatures, simulates Persistent Heat Values for fast signature extraction from retrieved shape files. Finally, a systematic integration of the proposed shape analysis based on knowledge taxonomy is prototypically implemented. The objective of this testbed is to illustrate a proof-of-concept DT-aided process autonomy fed by rapid 3D surface signatures. As a result, by hybridizing smart sensing and simulative approaches, we exploit shape signatures as manufacturing knowledge by integrating domain knowledge and data-driven decision-makings. Moreover, human–machine interoperability enabling system-level intelligent controls becomes feasible in complex material handling, shape forming, measuring, and inspection processes.

Suggested Citation

  • Kaishu Xia & Thorsten Wuest & Ramy Harik, 2023. "Automated manufacturability analysis in smart manufacturing systems: a signature mapping method for product-centered digital twins," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3069-3090, October.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01991-4
    DOI: 10.1007/s10845-022-01991-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01991-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01991-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. H. Redelinghuys & A. H. Basson & K. Kruger, 2020. "A six-layer architecture for the digital twin: a manufacturing case study implementation," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1383-1402, August.
    2. Lee J. Wells & Romina Dastoorian & Jaime A. Camelio, 2021. "A novel NURBS surface approach to statistically monitor manufacturing processes with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 329-345, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    2. Hassan Alimam & Giovanni Mazzuto & Marco Ortenzi & Filippo Emanuele Ciarapica & Maurizio Bevilacqua, 2023. "Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    3. Ayman AboElHassan & Soumaya Yacout, 2023. "A digital shadow framework using distributed system concepts," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3579-3598, December.
    4. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    6. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    7. Vivek Warke & Satish Kumar & Arunkumar Bongale & Ketan Kotecha, 2021. "Sustainable Development of Smart Manufacturing Driven by the Digital Twin Framework: A Statistical Analysis," Sustainability, MDPI, vol. 13(18), pages 1-49, September.
    8. Romina Dastoorian & Lee J. Wells, 2023. "A hybrid off-line/on-line quality control approach for real-time monitoring of high-density datasets," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 669-682, February.
    9. Pan, Yanghua & Zhong, Ray Y. & Qu, Ting & Ding, Liqiang & Zhang, Jun, 2024. "Multi-level digital twin-driven kitting-synchronized optimization for production logistics system," International Journal of Production Economics, Elsevier, vol. 271(C).
    10. Saporiti, Nicolò & Cannas, Violetta Giada & Pozzi, Rossella & Rossi, Tommaso, 2023. "Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study," International Journal of Production Economics, Elsevier, vol. 261(C).
    11. Weifei Hu & Jinyi Shao & Qing Jiao & Chuxuan Wang & Jin Cheng & Zhenyu Liu & Jianrong Tan, 2023. "A new differentiable architecture search method for optimizing convolutional neural networks in the digital twin of intelligent robotic grasping," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2943-2961, October.
    12. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    13. Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).
    14. Maksim Dli & Andrei Puchkov & Valery Meshalkin & Ildar Abdeev & Rail Saitov & Rinat Abdeev, 2020. "Energy and Resource Efficiency in Apatite-Nepheline Ore Waste Processing Using the Digital Twin Approach," Energies, MDPI, vol. 13(21), pages 1-13, November.
    15. Chen Zhao & Shichang Du & Jun Lv & Yafei Deng & Guilong Li, 2023. "A novel parallel classification network for classifying three-dimensional surface with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 515-527, February.
    16. PengYu Wang & Wen-An Yang & YouPeng You, 2023. "A cyber-physical prototype system in augmented reality using RGB-D camera for CNC machining simulation," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3637-3658, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01991-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.