IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i4d10.1007_s10845-020-01598-7.html
   My bibliography  Save this article

Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms

Author

Listed:
  • Zixiang Li

    (Wuhan University of Science and Technology
    Wuhan University of Science and Technology)

  • Mukund Nilakantan Janardhanan

    (University of Leicester)

  • S. G. Ponnambalam

    (VIT University)

Abstract

Robots are extensively used during the era of Industry 4.0 to achieve high productivity, better quality and lower cost. While designing a robotic assembly line, production managers are concerned about the cost involved in such a system development. Most of the research reported till date did not consider purchasing cost while optimizing the design of a robotic assembly line. This study presents the first attempt to study the cost-oriented robotic assembly line balancing problem with setup times to minimize the cycle time and total purchasing cost simultaneously. A mixed-integer linear programming model is developed to formulate this problem. The elitist non-dominated sorting genetic algorithm (NSGA-II) and improved multi-objective artificial bee colony (IMABC) algorithm are developed to achieve a set of Pareto solutions for the production managers to utilize for selecting the better design solution. The proposed IMABC develops new employed bee phase and scout phase, which selects one solution in the permanent Pareto archive to replace the abandoned solution, to enhance exploration and exploitation. The comparative study on a set of generated instances demonstrates that the proposed model is capable of achieving the proper tradeoff between line efficiency and purchasing cost, and the proposed NSGA-II and IMABC achieve competing performance in comparison with several other multi-objective algorithms.

Suggested Citation

  • Zixiang Li & Mukund Nilakantan Janardhanan & S. G. Ponnambalam, 2021. "Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 989-1007, April.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01598-7
    DOI: 10.1007/s10845-020-01598-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01598-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01598-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andres, Carlos & Miralles, Cristobal & Pastor, Rafael, 2008. "Balancing and scheduling tasks in assembly lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1212-1223, June.
    2. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    3. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    4. Amen, Matthias, 2001. "Heuristic methods for cost-oriented assembly line balancing: A comparison on solution quality and computing time," International Journal of Production Economics, Elsevier, vol. 69(3), pages 255-264, February.
    5. Amen, Matthias, 2000. "Heuristic methods for cost-oriented assembly line balancing: A survey," International Journal of Production Economics, Elsevier, vol. 68(1), pages 1-14, October.
    6. Ullah Saif & Zailin Guan & Li Zhang & Fei Zhang & Baoxi Wang & Jahanzaib Mirza, 2019. "Multi-objective artificial bee colony algorithm for order oriented simultaneous sequencing and balancing of multi-mixed model assembly line," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1195-1220, March.
    7. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    8. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    9. Amen, Matthias, 2006. "Cost-oriented assembly line balancing: Model formulations, solution difficulty, upper and lower bounds," European Journal of Operational Research, Elsevier, vol. 168(3), pages 747-770, February.
    10. Yuval Cohen & Ezey Dar-El, 2010. "The sliding frame – extending the concept to various assembly line balancing problems," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 20(1/2/3/4), pages 4-24.
    11. Levitin, Gregory & Rubinovitz, Jacob & Shnits, Boris, 2006. "A genetic algorithm for robotic assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 811-825, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Dashuang Li & Chaoyong Zhang & Xinyu Shao & Wenwen Lin, 2016. "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 725-739, August.
    5. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    6. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    7. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    8. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    9. Parames Chutima, 2022. "A comprehensive review of robotic assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 1-34, January.
    10. Guschinskaya, Olga & Dolgui, Alexandre, 2009. "Comparison of exact and heuristic methods for a transfer line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 276-286, August.
    11. Christian Weckenborg & Karsten Kieckhäfer & Christoph Müller & Martin Grunewald & Thomas S. Spengler, 2020. "Balancing of assembly lines with collaborative robots," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 93-132, April.
    12. Akpinar, Sener & Elmi, Atabak & Bektaş, Tolga, 2017. "Combinatorial Benders cuts for assembly line balancing problems with setups," European Journal of Operational Research, Elsevier, vol. 259(2), pages 527-537.
    13. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    14. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    15. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    16. Scholl, Armin & Becker, Christian, 2005. "A note on "An exact method for cost-oriented assembly line balancing"," International Journal of Production Economics, Elsevier, vol. 97(3), pages 343-352, September.
    17. Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
    18. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    19. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).
    20. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y. & Nossack, Jenny & Pesch, Erwin, 2014. "Minimizing setup costs in a transfer line design problem with sequential operation processing," International Journal of Production Economics, Elsevier, vol. 151(C), pages 186-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:4:d:10.1007_s10845-020-01598-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.