IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v120y2009i2p276-286.html
   My bibliography  Save this article

Comparison of exact and heuristic methods for a transfer line balancing problem

Author

Listed:
  • Guschinskaya, Olga
  • Dolgui, Alexandre

Abstract

Transfer line balancing problems (TLBP) deal with the optimization of serial machining lines. At every machine, the operations are performed by blocks. The operations within each block are executed simultaneously by the same multi-spindle head. In the lines considered here, the spindle heads of each machine are activated sequentially. The objective of TLBP is to group the operations into blocks and to assign the blocks to machines in order to minimize the total amount of the required equipment (spindle heads and machines). This problem is described and all the most promising exact and heuristic algorithms, recently suggested for it, are compared via detailed computational experiments.

Suggested Citation

  • Guschinskaya, Olga & Dolgui, Alexandre, 2009. "Comparison of exact and heuristic methods for a transfer line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 276-286, August.
  • Handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:276-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00005-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miralles, Cristobal & Garcia-Sabater, Jose Pedro & Andres, Carlos & Cardos, Manuel, 2007. "Advantages of assembly lines in Sheltered Work Centres for Disabled. A case study," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 187-197, October.
    2. Lapierre, Sophie D. & Ruiz, Angel & Soriano, Patrick, 2006. "Balancing assembly lines with tabu search," European Journal of Operational Research, Elsevier, vol. 168(3), pages 826-837, February.
    3. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    4. Amen, Matthias, 2001. "Heuristic methods for cost-oriented assembly line balancing: A comparison on solution quality and computing time," International Journal of Production Economics, Elsevier, vol. 69(3), pages 255-264, February.
    5. Amen, Matthias, 2000. "Heuristic methods for cost-oriented assembly line balancing: A survey," International Journal of Production Economics, Elsevier, vol. 68(1), pages 1-14, October.
    6. Bukchin, Joseph & Masin, Michael, 2004. "Multi-objective design of team oriented assembly systems," European Journal of Operational Research, Elsevier, vol. 156(2), pages 326-352, July.
    7. Guschinskaya, O. & Dolgui, A. & Guschinsky, N. & Levin, G., 2008. "A heuristic multi-start decomposition approach for optimal design of serial machining lines," European Journal of Operational Research, Elsevier, vol. 189(3), pages 902-913, September.
    8. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    10. Corominas, Albert & Pastor, Rafael & Plans, Joan, 2008. "Balancing assembly line with skilled and unskilled workers," Omega, Elsevier, vol. 36(6), pages 1126-1132, December.
    11. Dolgui, A. & Guschinsky, N. & Levin, G. & Proth, J.-M., 2008. "Optimisation of multi-position machines and transfer lines," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1375-1389, March.
    12. Levitin, Gregory & Rubinovitz, Jacob & Shnits, Boris, 2006. "A genetic algorithm for robotic assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 811-825, February.
    13. Gokcen, Hadi & Agpak, Kursad & Benzer, Recep, 2006. "Balancing of parallel assembly lines," International Journal of Production Economics, Elsevier, vol. 103(2), pages 600-609, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delorme, Xavier & Dolgui, Alexandre & Kovalyov, Mikhail Y., 2012. "Combinatorial design of a minimum cost transfer line," Omega, Elsevier, vol. 40(1), pages 31-41, January.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    2. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    5. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    6. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    7. Araújo, Felipe F.B. & Costa, Alysson M. & Miralles, Cristóbal, 2012. "Two extensions for the ALWABP: Parallel stations and collaborative approach," International Journal of Production Economics, Elsevier, vol. 140(1), pages 483-495.
    8. Costa, Alysson M. & Miralles, Cristóbal, 2009. "Job rotation in assembly lines employing disabled workers," International Journal of Production Economics, Elsevier, vol. 120(2), pages 625-632, August.
    9. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    10. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    11. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    12. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    13. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    14. Scholl, Armin & Boysen, Nils, 2009. "Designing parallel assembly lines with split workplaces: Model and optimization procedure," International Journal of Production Economics, Elsevier, vol. 119(1), pages 90-100, May.
    15. Parames Chutima, 2022. "A comprehensive review of robotic assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 1-34, January.
    16. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    17. Christoph Müller & Martin Grunewald & Thomas S. Spengler, 2017. "Redundant configuration of automated flow lines based on “Industry 4.0”-technologies," Journal of Business Economics, Springer, vol. 87(7), pages 877-898, October.
    18. Ashish Yadav & Sunil Agrawal, 2022. "Mathematical model for robotic two-sided assembly line balancing problem with zoning constraints," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 395-408, February.
    19. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    20. Moreira, Mayron César O. & Costa, Alysson M., 2013. "Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers," International Journal of Production Economics, Elsevier, vol. 141(2), pages 552-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:120:y:2009:i:2:p:276-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.