IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2157-d628942.html
   My bibliography  Save this article

A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations

Author

Listed:
  • Eduardo Álvarez-Miranda

    (School of Economics and Business, Universidad de Talca, Talca 3460000, Chile)

  • Jordi Pereira

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar 2520000, Chile)

  • Harold Torrez-Meruvia

    (EAE Business School, C. Aragó 55, 08015 Barcelona, Spain)

  • Mariona Vilà

    (EAE Business School, C. Aragó 55, 08015 Barcelona, Spain)

Abstract

The assembly line balancing problem is a classical optimisation problem whose objective is to assign each production task to one of the stations on the assembly line so that the total efficiency of the line is maximized. This study proposes a novel hybrid method to solve the simple version of the problem in which the number of stations is fixed, a problem known as SALBP-2. The hybrid differs from previous approaches by encoding individuals of a genetic algorithm as instances of a modified problem that contains only a subset of the solutions to the original formulation. These individuals are decoded to feasible solutions of the original problem during fitness evaluation in which the resolution of the modified problem is conducted using a dynamic programming based approach that uses new bounds to reduce its state space. Computational experiments show the efficiency of the method as it is able to obtain several new best-known solutions for some of the benchmark instances used in the literature for comparison purposes.

Suggested Citation

  • Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2157-:d:628942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas R. Hoffmann, 1963. "Assembly Line Balancing with a Precedence Matrix," Management Science, INFORMS, vol. 9(4), pages 551-562, July.
    2. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    3. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    4. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Audrey Cerqueus & Xavier Delorme, 2019. "A branch-and-bound method for the bi-objective simple line assembly balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5640-5659, September.
    6. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    7. Yuchen Li, 2017. "The type-II assembly line rebalancing problem considering stochastic task learning," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7334-7355, December.
    8. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    9. James R. Jackson, 1956. "A Computing Procedure for a Line Balancing Problem," Management Science, INFORMS, vol. 2(3), pages 261-271, April.
    10. Klein, Robert & Scholl, Armin, 1996. "Maximizing the production rate in simple assembly line balancing -- A branch and bound procedure," European Journal of Operational Research, Elsevier, vol. 91(2), pages 367-385, June.
    11. Yilin Fang & Hao Ming & Miqing Li & Quan Liu & Duc Truong Pham, 2020. "Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 846-862, February.
    12. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    13. Abdolreza Roshani & Massimo Paolucci & Davide Giglio & Flavio Tonelli, 2021. "A hybrid adaptive variable neighbourhood search approach for multi-sided assembly line balancing problem to minimise the cycle time," International Journal of Production Research, Taylor & Francis Journals, vol. 59(12), pages 3696-3721, June.
    14. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    15. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    16. Zixiang Li & Mukund Nilakantan Janardhanan & S. G. Ponnambalam, 2021. "Cost-oriented robotic assembly line balancing problem with setup times: multi-objective algorithms," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 989-1007, April.
    17. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    18. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    19. Yong Cao & Yuan Li & Qinghua Liu & Jie Zhang, 2020. "An Optimization Model for Assembly Line Balancing Problem with Uncertain Cycle Time," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, June.
    20. Roger V. Johnson, 1988. "Optimally Balancing Large Assembly Lines with "Fable"," Management Science, INFORMS, vol. 34(2), pages 240-253, February.
    21. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    22. S D Lapierre & A B Ruiz, 2004. "Balancing assembly lines: an industrial case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(6), pages 589-597, June.
    23. Fatih Ugurdag, H. & Rachamadugu, Ram & Papachristou, Christos A., 1997. "Designing paced assembly lines with fixed number of stations," European Journal of Operational Research, Elsevier, vol. 102(3), pages 488-501, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    4. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    6. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    7. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    8. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    9. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    10. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.
    11. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    12. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
    13. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    14. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    15. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    16. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    18. Vilà, Mariona & Pereira, Jordi, 2013. "An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time," European Journal of Operational Research, Elsevier, vol. 229(1), pages 106-113.
    19. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    20. Morrison, David R. & Sewell, Edward C. & Jacobson, Sheldon H., 2014. "An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset," European Journal of Operational Research, Elsevier, vol. 236(2), pages 403-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2157-:d:628942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.