IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i2d10.1007_s10845-020-01588-9.html
   My bibliography  Save this article

Preventive maintenance scheduling optimization based on opportunistic production-maintenance synchronization

Author

Listed:
  • Li Li

    (Tongji University
    Tongji University)

  • Yong Wang

    (Tongji University)

  • Kuo-Yi Lin

    (Tongji University
    Tongji University)

Abstract

Equipment maintenance is momentous for improving production efficiency, how to integrate maintenance into production to address uncertain problems has attracted considerable attention. This paper addresses a novel approach for integrating preventive maintenance (PM) into production planning of a complex manufacturing system based on availability and cost. The proposed approach relies on two phases: firstly, this study predicts required capacity of each machine through extreme learning machine algorithm. Based on analyzing historical data, the opportunistic periods are calculated for implementing PM tasks to have less impact on production and obtain the PM interval and duration. Secondly, this study obtains the scheduling planning and the least number of maintenance personnel through an improved ant colony optimization algorithm. Finally, the feasibility and benefits of this approach are investigated based on empirical study by using historical data from real manufacturing execution system and equipment maintenance system. Experimental results demonstrate the effectiveness of proposed approach, reduce personnel number while guarantee the maintenance tasks. Therefore, the proposed approach is beneficial to improve the company’s production efficiency.

Suggested Citation

  • Li Li & Yong Wang & Kuo-Yi Lin, 2021. "Preventive maintenance scheduling optimization based on opportunistic production-maintenance synchronization," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 545-558, February.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01588-9
    DOI: 10.1007/s10845-020-01588-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01588-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01588-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2012. "Integrating noncyclical preventive maintenance scheduling and production planning for a single machine," International Journal of Production Economics, Elsevier, vol. 136(2), pages 344-351.
    2. Zhou, Xiaojun & Shi, Kailong, 2019. "Capacity failure rate based opportunistic maintenance modeling for series-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 46-53.
    3. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    4. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    5. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    6. Abbink, Klaus & Dong, Lu & Huang, Lingbo, 2023. "Preventive wars," Games and Economic Behavior, Elsevier, vol. 142(C), pages 552-569.
      • Klaus Abbink & Lu Dong & Lingbo Huang, 2022. "Preventive Wars," Discussion Papers 2022-01, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    7. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    8. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    9. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    10. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    11. Philip J. Boland, 1982. "Periodic replacement when minimal repair costs vary with time," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(4), pages 541-546, December.
    12. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    13. Antti Saaksvuori & Anselmi Immonen, 2008. "Product Lifecycle Management," Springer Books, Springer, number 978-3-540-78172-1, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madhusudanan Navinchandran & Michael E. Sharp & Michael P. Brundage & Thurston B. Sexton, 2022. "Discovering critical KPI factors from natural language in maintenance work orders," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1859-1877, August.
    2. Qingfei Tong & Xinguo Ming & Xianyu Zhang, 2023. "Construction of Sustainable Digital Factory for Automated Warehouse Based on Integration of ERP and WMS," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    3. Khaled Alhamad & Yousuf Alkhezi, 2024. "Hybrid Genetic Algorithm and Tabu Search for Solving Preventive Maintenance Scheduling Problem for Cogeneration Plants," Mathematics, MDPI, vol. 12(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    3. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Yaqiong Lv & Pan Zheng & Jiabei Yuan & Xiaohua Cao, 2023. "A Predictive Maintenance Strategy for Multi-Component Systems Based on Components’ Remaining Useful Life Prediction," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    5. Li, Yaping & Xia, Tangbin & Chen, Zhen & Pan, Ershun, 2023. "Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    8. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    10. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Truong Ba, H. & Cholette, M.E. & Borghesani, P. & Zhou, Y. & Ma, L., 2017. "Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 151-161.
    12. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    15. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    16. William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
    17. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    18. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Barbato, Michele & Gouveia, Luís, 2024. "The Hamiltonian p-median problem: Polyhedral results and branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 316(2), pages 473-487.
    20. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:2:d:10.1007_s10845-020-01588-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.