IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i8d10.1007_s10845-016-1210-5.html
   My bibliography  Save this article

Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm

Author

Listed:
  • R. Venkata Rao

    (S. V. National Institute of Technology)

  • Dhiraj P. Rai

    (S. V. National Institute of Technology)

  • J. Balic

    (University of Maribor)

Abstract

Selection of optimum machining parameters is vital to the machining processes in order to ensure the quality of the product, reduce the machining cost, increasing the productivity and conserve resources for sustainability. Hence, in this work a posteriori multi-objective optimization algorithm named as Non-dominated Sorting Teaching–Learning-Based Optimization (NSTLBO) is applied to solve the multi-objective optimization problems of three machining processes namely, turning, wire-electric-discharge machining and laser cutting process and two micro-machining processes namely, focused ion beam micro-milling and micro wire-electric-discharge machining. The NSTLBO algorithm is incorporated with non-dominated sorting approach and crowding distance computation mechanism to maintain a diverse set of solutions in order to provide a Pareto-optimal set of solutions in a single simulation run. The results of the NSTLBO algorithm are compared with the results obtained using GA, NSGA-II, PSO, iterative search method and MOTLBO and are found to be competitive. The Pareto-optimal set of solutions for each optimization problem is obtained and reported. These Pareto-optimal set of solutions will help the decision maker in volatile scenarios and are useful for real production systems.

Suggested Citation

  • R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2018. "Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1715-1737, December.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:8:d:10.1007_s10845-016-1210-5
    DOI: 10.1007/s10845-016-1210-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1210-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1210-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elango Natarajan & Varadaraju Kaviarasan & Wei Hong Lim & Sew Sun Tiang & S. Parasuraman & Sangeetha Elango, 2020. "Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 911-935, April.
    2. Daniele Marini & Jonathan R. Corney, 2021. "Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 611-631, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:8:d:10.1007_s10845-016-1210-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.