IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i6d10.1007_s10845-018-1403-1.html
   My bibliography  Save this article

A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems

Author

Listed:
  • Hao Liu

    (University of Science and Technology Liaoning)

  • Yue Wang

    (University of Science and Technology Liaoning)

  • Liangping Tu

    (University of Science and Technology Liaoning)

  • Guiyan Ding

    (University of Science and Technology Liaoning)

  • Yuhan Hu

    (University of Science and Technology Liaoning)

Abstract

Particle swarm optimization (PSO) has attracted the attention of many researchers because of its simple concept and easy implementation. However, it suffers from premature convergence due to quick loss of population diversity. Meanwhile, real-world engineering design problems are generally nonlinear or large-scale or constrained optimization problems. To enhance the performance of PSO for solving large-scale numerical optimizations and engineering design problems, an adaptive disruption strategy which originates from the disruption phenomenon of astrophysics, is proposed to shift the abilities between global exploration and local exploitation. Meanwhile, a Cauchy mutation is utilized to a certain dimension of the best particle to help particle jump out the local optima. Nine well-known large-scale unconstrained problems, ten complicated shifted and/or rotated functions and four famous constrained engineering problems are utilized to validate the performance of the proposed algorithm compared against those of state-of-the-art algorithms. Experimental results and statistic analysis confirm effectiveness and promising performance of the proposed algorithm.

Suggested Citation

  • Hao Liu & Yue Wang & Liangping Tu & Guiyan Ding & Yuhan Hu, 2019. "A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2407-2433, August.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:6:d:10.1007_s10845-018-1403-1
    DOI: 10.1007/s10845-018-1403-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1403-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1403-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.
    2. Haiyan Lu & Weiqi Chen, 2006. "Dynamic-objective particle swarm optimization for constrained optimization problems," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 409-419, December.
    3. M. Ali & W. Zhu, 2013. "A penalty function-based differential evolution algorithm for constrained global optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 707-739, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    2. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    3. Cosmena Mahapatra & Ashish Payal & Meenu Chopra, 2020. "Swarm intelligence based centralized clustering: a novel solution," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1877-1888, December.
    4. Zhijian Xiong & Jingming Yang & Zhiwei Zhao & Yongqiang Wang & Zhigang Yang, 2023. "Maximum angle evolutionary selection for many-objective optimization algorithm with adaptive reference vector," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 961-984, March.
    5. Daniele Marini & Jonathan R. Corney, 2021. "Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 611-631, February.
    6. Robson Flavio Castro & Moacir Godinho-Filho & Roberto Fernandes Tavares-Neto, 2022. "Dispatching method based on particle swarm optimization for make-to-availability," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1021-1030, April.
    7. Yiying Zhang & Zhigang Jin, 2022. "Comprehensive learning Jaya algorithm for engineering design optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1229-1253, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Yulong Xu & Jian-an Fang & Wu Zhu & Xiaopeng Wang & Lingdong Zhao, 2015. "Differential evolution using a superior–inferior crossover scheme," Computational Optimization and Applications, Springer, vol. 61(1), pages 243-274, May.
    3. Amarjeet Singh & Kusum Deep, 2017. "Hybridizing gravitational search algorithm with real coded genetic algorithms for structural engineering design problem," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 505-536, September.
    4. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    5. Gloria Milena Vargas Gil & Lucas Lima Rodrigues & Roberto S. Inomoto & Alfeu J. Sguarezi & Renato Machado Monaro, 2019. "Weighted-PSO Applied to Tune Sliding Mode Plus PI Controller Applied to a Boost Converter in a PV System," Energies, MDPI, vol. 12(5), pages 1-18, March.
    6. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    7. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    8. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    9. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    10. Yu, Qiang, 2021. "A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    11. Yan Cao & Towhid Pourrostam & Yousef Zandi & Nebojša Denić & Bogdan Ćirković & Alireza Sadighi Agdas & Abdellatif Selmi & Vuk Vujović & Kittisak Jermsittiparsert & Momir Milic, 2021. "RETRACTED ARTICLE: Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17349-17373, December.
    12. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    13. Hossein Moayedi & Amir Mosavi, 2021. "Synthesizing Multi-Layer Perceptron Network with Ant Lion Biogeography-Based Dragonfly Algorithm Evolutionary Strategy Invasive Weed and League Champion Optimization Hybrid Algorithms in Predicting He," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    14. Geng Lin & Wenxing Zhu & M. Montaz Ali, 2016. "An effective discrete dynamic convexized method for solving the winner determination problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 563-593, August.
    15. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.
    16. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    17. M. Fernanda P. Costa & Rogério B. Francisco & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2017. "Theoretical and Practical Convergence of a Self-Adaptive Penalty Algorithm for Constrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 875-893, September.
    18. Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.
    19. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:6:d:10.1007_s10845-018-1403-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.