IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i5d10.1007_s10845-020-01723-6.html
   My bibliography  Save this article

Comprehensive learning Jaya algorithm for engineering design optimization problems

Author

Listed:
  • Yiying Zhang

    (Tianjin University)

  • Zhigang Jin

    (Tianjin University)

Abstract

Jaya algorithm (JAYA) is a recently developed metaheuristic algorithm for global optimization problems. JAYA has a very simple structure and only needs the essential population size and terminal condition for solving optimization problems. However, JAYA is easy to get trapped in the local optimum for solving complex global optimization problems due to its single learning strategy. Motivated by this disadvantage of JAYA, this paper presents an improved JAYA, named comprehensive learning JAYA algorithm (CLJAYA), for solving engineering design optimization problems. The core idea of CLJAYA is the designed comprehensive learning mechanism by making full use of population information. The designed comprehensive learning mechanism consists of three different learning strategies to improve the global search ability of JAYA. To investigate the performance of CLJAYA, CLJAYA is first evaluated by the well-known CEC 2013 and CEC 2014 test suites, which include 50 multimodal test functions and eight unimodal test functions. Then CLJAYA is employed to solve five real-world engineering optimization problems. Experimental results demonstrate that CLJAYA can achieve better solutions for most test problems than JAYA and the other compared algorithms, which indicates the designed comprehensive learning mechanism is very effective. In addition, the source code of the proposed CLJAYA can be loaded from https://www.mathworks.com/matlabcentral/fileexchange/82134-the-source-code-for-cljaya .

Suggested Citation

  • Yiying Zhang & Zhigang Jin, 2022. "Comprehensive learning Jaya algorithm for engineering design optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1229-1253, June.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01723-6
    DOI: 10.1007/s10845-020-01723-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01723-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01723-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    2. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    3. Hao Liu & Yue Wang & Liangping Tu & Guiyan Ding & Yuhan Hu, 2019. "A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2407-2433, August.
    4. Jin Yi & Xinyu Li & Chih-Hsing Chu & Liang Gao, 2019. "Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 405-428, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    2. Wenchao Yi & Liang Gao & Zhi Pei & Jiansha Lu & Yong Chen, 2021. "ε Constrained differential evolution using halfspace partition for optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 157-178, January.
    3. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    4. Zhang, Jinzhong & Zhang, Gang & Kong, Min & Zhang, Tan & Wang, Duansong & Chen, Rui, 2023. "CWOA: A novel complex-valued encoding whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 151-188.
    5. Zhijian Xiong & Jingming Yang & Zhiwei Zhao & Yongqiang Wang & Zhigang Yang, 2023. "Maximum angle evolutionary selection for many-objective optimization algorithm with adaptive reference vector," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 961-984, March.
    6. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    7. Robson Flavio Castro & Moacir Godinho-Filho & Roberto Fernandes Tavares-Neto, 2022. "Dispatching method based on particle swarm optimization for make-to-availability," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1021-1030, April.
    8. Chao Huang & Zhenyu Zhao & Qingwen Li & Xiong Luo & Long Wang, 2024. "Wind Power Bidding Based on an Ensemble Differential Evolution Algorithm with a Problem-Specific Constraint-Handling Technique," Energies, MDPI, vol. 17(2), pages 1-14, January.
    9. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    10. Uğur Erkin Kocamaz & Alper Göksu & Harun Taşkın & Yılmaz Uyaroğlu, 2021. "Control of chaotic two-predator one-prey model with single state control signals," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1563-1572, August.
    11. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    12. Khalid Abdulaziz Alnowibet & Salem Mahdi & Mahmoud El-Alem & Mohamed Abdelawwad & Ali Wagdy Mohamed, 2022. "Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems," Mathematics, MDPI, vol. 10(8), pages 1-25, April.
    13. Aggarwal, Sakshi & Mishra, Krishn K., 2023. "X-MODE: Extended Multi-operator Differential Evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 85-108.
    14. Umesh Balande & Deepti Shrimankar, 2019. "SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained Optimization Engineering Design Problems," Mathematics, MDPI, vol. 7(3), pages 1-26, March.
    15. Cosmena Mahapatra & Ashish Payal & Meenu Chopra, 2020. "Swarm intelligence based centralized clustering: a novel solution," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1877-1888, December.
    16. Yiying Zhang & Aining Chi, 2023. "Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1547-1571, April.
    17. Daniele Marini & Jonathan R. Corney, 2021. "Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 611-631, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01723-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.