IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v404y2021ics0096300321003222.html
   My bibliography  Save this article

A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection

Author

Listed:
  • Yu, Qiang

Abstract

The paper aims at applications of a decoupled wavelet method for investigating multiple physical steady flow fields of binary nanofluids in double-diffusive mixed convection. The Buongiorno’s mathematical model of nanofluids is further perfected in the presence of Dufour and Soret effects, incorporating with linear and nonlinear diffusiophoresis effects based on experiments [Chemical Engineering Science 176 (2018): 632–640]. Nonhomogeneous thermal boundaries corresponding to heat flux on vertical walls and convection heat transfer at the bottom along with moving top lid are effectively approximated by interpolated Coiflet-type wavelet. Highly coupled and nonlinear governing equations for the complex fields of temperature, nanoparticles volume fraction and solute concentration have been formulated and decomposed into linear differential ones by homotopy transformation. Numerical wavelet solutions with larger range of physical parameters are finally obtained and validated by solving a set of iterative algebra equations applying Galerkin method, which are difficult to be given by traditional numerical methods. The results reveal that nanoparticles and double-diffusive buoyancy parameters, the thermo-nanofluid and thermo-solutal Lewis numbers, the heat conductivity coefficient, the periodical heat flux with different phase differences, the diffusiophoresis parameters, the nanoparticles and solute Dufour parameters, the solute Soret parameter are of great significance on characteristics of heat and mass transfer in the complex flow.

Suggested Citation

  • Yu, Qiang, 2021. "A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  • Handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003222
    DOI: 10.1016/j.amc.2021.126232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    2. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.
    3. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    4. Sheremet, Mikhail A. & Revnic, Cornelia & Pop, Ioan, 2017. "Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qiang, 2023. "A homotopy-based wavelet method for extreme large bending analysis of heterogeneous anisotropic plate with variable thickness on orthotropic foundation," Applied Mathematics and Computation, Elsevier, vol. 439(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    3. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    4. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    5. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    6. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    7. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    8. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    9. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    10. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    13. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    14. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    16. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    17. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    18. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    19. Shaafi, T. & Sairam, K. & Gopinath, A. & Kumaresan, G. & Velraj, R., 2015. "Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 563-573.
    20. Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.