IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1649-d517853.html
   My bibliography  Save this article

Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings

Author

Listed:
  • Hossein Moayedi

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

  • Amir Mosavi

    (Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
    Institute of Structural Mechanics, Bauhaus Universität-Weimar, 99423 Weimar, Germany
    John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary)

Abstract

Early prediction of thermal loads plays an essential role in analyzing energy-efficient buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage. The proposed model is a combination of artificial neural networks and stochastic fractal search (SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA) and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%, and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS along with ANN provides a reliable hybrid model for the early prediction of CL.

Suggested Citation

  • Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1649-:d:517853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.
    2. Li, Zhi-Guo & Cheng, Han & Gu, Tian-Yao, 2019. "Research on dynamic relationship between natural gas consumption and economic growth in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 334-339.
    3. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    4. Tomasz Halon & Ewa Pelinska-Olko & Malgorzata Szyc & Bartosz Zajaczkowski, 2019. "Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network," Energies, MDPI, vol. 12(17), pages 1-11, August.
    5. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.
    6. Naji, Sareh & Shamshirband, Shahaboddin & Basser, Hossein & Keivani, Afram & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Petković, Dalibor, 2016. "Application of adaptive neuro-fuzzy methodology for estimating building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1520-1528.
    7. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    8. Akemi Gálvez & Andrés Iglesias, 2013. "Firefly Algorithm for Polynomial Bézier Surface Parameterization," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, September.
    9. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    10. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    11. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
    12. Fu, Xiuwen & Yang, Yongsheng, 2020. "Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Chen, Huazhou & Chen, An & Xu, Lili & Xie, Hai & Qiao, Hanli & Lin, Qinyong & Cai, Ken, 2020. "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Agricultural Water Management, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
    3. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    4. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    5. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    7. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    8. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    9. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    10. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    11. Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
    12. Hossein Moayedi & Amir Mosavi, 2021. "Synthesizing Multi-Layer Perceptron Network with Ant Lion Biogeography-Based Dragonfly Algorithm Evolutionary Strategy Invasive Weed and League Champion Optimization Hybrid Algorithms in Predicting He," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    13. Bashir Muhammad & Sher Khan, 2021. "Understanding the relationship between natural resources, renewable energy consumption, economic factors, globalization and CO2 emissions in developed and developing countries," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 138-156, May.
    14. Ali Bahadori-Jahromi & Abdulazeez Rotimi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    15. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    16. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    17. Alaa Saeed & A. A. Abdel-Aziz & Amr Mossad & Mahmoud A. Abdelhamid & Alfadhl Y. Alkhaled & Muhammad Mayhoub, 2023. "Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-14, January.
    18. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    19. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    20. Boardman, Nicholas T. & Sullivan, Kelly M., 2024. "Approximate dynamic programming for condition-based node deployment in a wireless sensor network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1649-:d:517853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.