IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i4d10.1007_s10845-017-1349-8.html
   My bibliography  Save this article

A case-based reasoning approach to fast optimization of travel routes for large-scale AS/RSs

Author

Listed:
  • Jaeseok Huh

    (Seoul National University)

  • Moon-jung Chae

    (Seoul National University)

  • Jonghun Park

    (Seoul National University)

  • Kwanho Kim

    (Incheon National University)

Abstract

Due to the increasing volume of stocks in the recent production and logistics environments, the scale of automated storage and retrieval systems (AS/RSs) is becoming significantly large. To optimize travel routes for such large-scale AS/RSs, an excessive computation complexity is unavoidable when the existing metaheuristics are applied due to their exhaustive nature to search for better travel routes. In this paper, we propose a method that aims to quickly optimize travel routes by using case-based reasoning. Specifically, in the casebase construction phase, the proposed method constructs a large number of cases each of which consists of the optimized travel route for a particular setting. In the reasoning phase, the travel routes in the cases are then repaired to determine the optimal travel route for the current setting. The experiment results show that the proposed method successfully yields optimized travel routes in a short time compared to the conventional methods for the real-world scale problems.

Suggested Citation

  • Jaeseok Huh & Moon-jung Chae & Jonghun Park & Kwanho Kim, 2019. "A case-based reasoning approach to fast optimization of travel routes for large-scale AS/RSs," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1765-1778, April.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:4:d:10.1007_s10845-017-1349-8
    DOI: 10.1007/s10845-017-1349-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1349-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1349-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Gunter, 1998. "Case-based reasoning for production scheduling," International Journal of Production Economics, Elsevier, vol. 56(1), pages 537-546, September.
    2. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.
    3. Yang, Peng & Miao, Lixin & Xue, Zhaojie & Ye, Bin, 2015. "Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 164-177.
    4. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    5. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    6. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijian Xiong & Jingming Yang & Zhiwei Zhao & Yongqiang Wang & Zhigang Yang, 2023. "Maximum angle evolutionary selection for many-objective optimization algorithm with adaptive reference vector," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 961-984, March.
    2. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    3. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    6. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    7. Buckow, Jan-Niklas & Knust, Sigrid, 2023. "The warehouse reshuffling problem with swap moves," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    8. Chen, Lu & Langevin, André & Riopel, Diane, 2011. "A tabu search algorithm for the relocation problem in a warehousing system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 147-156, January.
    9. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    10. Bortolini, Marco & Faccio, Maurizio & Ferrari, Emilio & Gamberi, Mauro & Pilati, Francesco, 2017. "Time and energy optimal unit-load assignment for automatic S/R warehouses," International Journal of Production Economics, Elsevier, vol. 190(C), pages 133-145.
    11. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    12. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Michele Barbato & Alberto Ceselli & Giovanni Righini, 2024. "A polynomial-time dynamic programming algorithm for an optimal picking problem in automated warehouses," Journal of Scheduling, Springer, vol. 27(4), pages 393-407, August.
    14. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    15. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    16. Nils Boysen & David Füßler & Konrad Stephan, 2020. "See the light: Optimization of put‐to‐light order picking systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 3-20, February.
    17. Yu, Y. & de Koster, M.B.M., 2009. "On the Suboptimality of Full Turnover-Based Storage," ERIM Report Series Research in Management ERS-2009-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    19. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    20. David Füßler & Nils Boysen, 2019. "High-performance order processing in picking workstations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 65-90, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:4:d:10.1007_s10845-017-1349-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.