IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v144y2020ics1366554520308036.html
   My bibliography  Save this article

Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system

Author

Listed:
  • Li, Xiaowei
  • Hua, Guowei
  • Huang, Anqiang
  • Sheu, Jiuh-Biing
  • Cheng, T.C.E.
  • Huang, Fengquan

Abstract

To facilitate more efficient and environmentally-friendly order picking operations, this study explores the optimal storage assignment policy in the Kiva mobile fulfilment system. First, temporal association analysis and a clustering approach are employed to identify highly correlated items to be stored in the same rack. Next, in order to avoid AGV blocking, a new turnover-rate-based decentralized storage policy (TRBDSP) is proposed. Subsequently, an order picking performance evaluation method is presented. Finally, simulation studies are performed to ascertain the effectiveness of TRBDSP. The results show that the new approach can significantly improve order picking efficiency and reduce AGV energy consumption.

Suggested Citation

  • Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:transe:v:144:y:2020:i:c:s1366554520308036
    DOI: 10.1016/j.tre.2020.102158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520308036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," European Journal of Operational Research, Elsevier, vol. 274(2), pages 501-515.
    2. Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
    3. Kübler, Patrick & Glock, C. H. & Bauernhansl, Thomas, 2020. "A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 122325, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    5. Rong Yuan & Tolga Cezik & Stephen C. Graves, 2018. "Stowage decisions in multi-zone storage systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 333-343, January.
    6. Felix Weidinger & Nils Boysen & Dirk Briskorn, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Service Science, INFORMS, vol. 52(6), pages 1479-1495, December.
    7. Jane, Chin-Chia & Laih, Yih-Wenn, 2005. "A clustering algorithm for item assignment in a synchronized zone order picking system," European Journal of Operational Research, Elsevier, vol. 166(2), pages 489-496, October.
    8. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," European Journal of Operational Research, Elsevier, vol. 262(2), pages 550-562.
    9. King-Wah Pang & Hau-Ling Chan, 2017. "Data mining-based algorithm for storage location assignment in a randomised warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4035-4052, July.
    10. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    11. Antonella Meneghetti & Eleonora Dal Borgo & Luca Monti, 2015. "Rack shape and energy efficient operations in automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7090-7103, December.
    12. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    13. Dijkstra, Arjan S. & Roodbergen, Kees Jan, 2017. "Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 38-59.
    14. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    15. Rong Yuan & Stephen C. Graves & Tolga Cezik, 2019. "Velocity‐Based Storage Assignment in Semi‐Automated Storage Systems," Production and Operations Management, Production and Operations Management Society, vol. 28(2), pages 354-373, February.
    16. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    17. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    18. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126182, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Paul Hahn-Woernle & Willibald A. Günthner, 2018. "Power-load management reduces energy-dependent costs of multi-aisle mini-load automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1269-1285, February.
    20. Luo, Hao & Yang, Xuan & Kong, Xiang T.R., 2019. "A synchronized production-warehouse management solution for reengineering the online-offline integrated order fulfillment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 211-230.
    21. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    22. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    23. Ene, Seval & Küçükoğlu, İlker & Aksoy, Aslı & Öztürk, Nursel, 2016. "A genetic algorithm for minimizing energy consumption in warehouses," Energy, Elsevier, vol. 114(C), pages 973-980.
    24. Park, Changkyu & Seo, Junyong, 2010. "Comparing heuristic algorithms of the planar storage location assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 171-185, January.
    25. Wen-Hsien Tsai & Yin-Hwa Lu, 2018. "A Framework of Production Planning and Control with Carbon Tax under Industry 4.0," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    26. Weidinger, Felix & Boysen, Nils & Briskorn, Dirk, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126190, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    27. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    28. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 85774, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    29. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    30. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    31. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    32. Tang, Christopher S. & Veelenturf, Lucas P., 2019. "The strategic role of logistics in the industry 4.0 era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 1-11.
    33. René B. M. De Koster & Andrew L. Johnson & Debjit Roy, 2017. "Warehouse design and management," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6327-6330, November.
    34. Daria Battini & Martina Calzavara & Alessandro Persona & Fabio Sgarbossa, 2015. "Order picking system design: the storage assignment and travel distance estimation (SA&TDE) joint method," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1077-1093, February.
    35. Yang, Peng & Miao, Lixin & Xue, Zhaojie & Ye, Bin, 2015. "Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 164-177.
    36. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    3. Liu, Weihua & George Shanthikumar, J. & Tae-Woo Lee, Paul & Li, Xiang & Zhou, Li, 2021. "Special issue editorial: Smart supply chains and intelligent logistics services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    4. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    5. Li, Kunpeng & Liu, Tengbo & Ram Kumar, P.N. & Han, Xuefang, 2024. "A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    6. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    8. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    10. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    3. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    4. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    6. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    7. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    10. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    11. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    12. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    13. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    14. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    15. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).
    16. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    17. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    18. Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
    19. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    20. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:144:y:2020:i:c:s1366554520308036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.