Residual life prediction based on dynamic weighted Markov model and particle filtering
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-015-1127-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chia-Hung Wang & Qigen Zhao & Rong Tian, 2023. "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network," Energies, MDPI, vol. 16(11), pages 1-24, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liming Deng & Wenjing Shen & Kangkang Xu & Xuhui Zhang, 2024. "An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration," Energies, MDPI, vol. 17(7), pages 1-15, April.
- Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
- Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
- Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
- Di Xue & Haisheng Wang & Junnian Wang & Changyang Guan & Yiru Xia, 2024. "Equivalent Cost Minimization Strategy for Plug-In Hybrid Electric Bus with Consideration of an Inhomogeneous Energy Price and Battery Lifespan," Sustainability, MDPI, vol. 17(1), pages 1-20, December.
- Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
- Shuming Wang & Yan-Fu Li & Tong Jia, 2020. "Distributionally Robust Design for Redundancy Allocation," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 620-640, July.
- Zhang, Xiang & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & Wang, Zhenpo, 2023. "A novel battery abnormality detection method using interpretable Autoencoder," Applied Energy, Elsevier, vol. 330(PB).
- Qiwu Zhu & Qingyu Xiong & Zhengyi Yang & Yang Yu, 2023. "A novel feature-fusion-based end-to-end approach for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3495-3505, December.
- Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).
- Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
- Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
- Shao-Xun Liu & Ya-Fu Zhou & Yan-Liang Liu & Jing Lian & Li-Jian Huang, 2021. "A Method for Battery Health Estimation Based on Charging Time Segment," Energies, MDPI, vol. 14(9), pages 1-15, May.
- Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
- Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
- Zhang, Caiping & Wang, Yubin & Gao, Yang & Wang, Fang & Mu, Biqiang & Zhang, Weige, 2019. "Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method," Applied Energy, Elsevier, vol. 256(C).
- Feng, Ran & Wang, Kai & Xu, Xu & Yu, Zi-Tao & Lin, Qingyang, 2024. "Triple-layer optimization of distributed photovoltaic energy storage capacity for manufacturing enterprises considering carbon emissions and load management," Applied Energy, Elsevier, vol. 364(C).
- Ahmad Farhat & Christophe Guyeux & Abdallah Makhoul & Ali Jaber & Rami Tawil & Abbas Hijazi, 2019. "Impacts of wireless sensor networks strategies and topologies on prognostics and health management," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2129-2155, June.
- Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
More about this item
Keywords
Dynamic weighted Markov model; Particle filtering; Residual life prediction; Probability distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:4:d:10.1007_s10845-015-1127-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.