IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i2d10.1007_s10845-013-0866-3.html
   My bibliography  Save this article

Intelligent maintenance prediction system for LED wafer testing machine

Author

Listed:
  • Chien-Chang Hsu

    (Fu-Jen Catholic University)

  • Min-Sheng Chen

    (Fu-Jen Catholic University)

Abstract

Achieving high quality production of light-emitting diode (LED) wafers requires robust monitoring and the use of a stable test machine. In many factories, production continues 24 h a day. Stopping the manufacturing process at a factory is often difficult. Therefore, reducing inspection time and ensuring the stability of test machines are important. Traditionally, LED wafer factories examine their test machines during periodic maintenance. Standard lamp adjustments are performed to ensure their accuracy. This process interrupts the manufacturing process and requires extra manpower. It reduces productivity and increases production cost. Additionally, the accurate assessment of the aging of the components of the machine requires an experienced engineer. Correctly timing the maintenance and replacing the aging components of the LED wafer test machine are important. This work performed feature extraction to identify the working attributes of an LED wafer test machine. The intelligent maintenance prediction system then uses the radial basis function neural network and variability of the working attributes to predict the maintenance times and aging of the LED wafer test machines. Experimental results reveal that the accuracy of proposed system in predicting maintenance times exceeds 98 %.

Suggested Citation

  • Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:2:d:10.1007_s10845-013-0866-3
    DOI: 10.1007/s10845-013-0866-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-013-0866-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-013-0866-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paula Andrea Potes Ruiz & Bernard Kamsu-Foguem & Daniel Noyes, 2013. "Knowledge reuse integrating the collaboration from experts in industrial maintenance management," Post-Print hal-00861829, HAL.
    2. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    2. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    3. Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
    4. Chung-Feng Jeffrey Kuo & Tz-ying Fang & Chi-Lung Lee & Han-Cheng Wu, 2019. "Automated optical inspection system for surface mount device light emitting diodes," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 641-655, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    2. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    3. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    4. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    6. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    7. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    8. Younghoon Lee, 2022. "Identifying Competitive Attributes Based on an Ensemble of Explainable Artificial Intelligence," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(4), pages 407-419, August.
    9. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    10. Bérenger Ossété Gombé & Gwenhael Goavec Mérou & Karla Breschi & Hervé Guyennet & Jean-Michel Friedt & Violeta Felea & Kamal Medjaher, 2019. "A SAW wireless sensor network platform for industrial predictive maintenance," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1617-1628, April.
    11. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Kim, Taejin & Lee, Gueseok & Youn, Byeng D., 2019. "PHM experimental design for effective state separation using Jensen–Shannon divergence," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
    15. Sara Antomarioni & Marjorie Maria Bellinello & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Renan Favarão da Silva & Gilberto Francisco Martha de Souza, 2020. "A Data-Driven Approach to Extend Failure Analysis: A Framework Development and a Case Study on a Hydroelectric Power Plant," Energies, MDPI, vol. 13(23), pages 1-16, December.
    16. Xiaoxia Liang & Fang Duan & Ian Bennett & David Mba, 2020. "A Comprehensive Health Indicator Integrated by the Dynamic Risk Profile from Condition Monitoring Data and the Function of Financial Losses," Energies, MDPI, vol. 14(1), pages 1-25, December.
    17. Liang, Tao & Wang, Fuli & Wang, Shu & Li, Kang & Mo, Xuelei & Lu, Di, 2024. "Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    18. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    19. Baptista, Marcia & Henriques, Elsa M.P. & de Medeiros, Ivo P. & Malere, Joao P. & Nascimento, Cairo L. & Prendinger, Helmut, 2019. "Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 228-239.
    20. Bernard Kamsu-Foguem & Philippe Clermont & Dieudonné Tchuente & Pierre Tiako & Samuel Fosso Wamba, 2023. "Service Provider Risk Mitigation in Aeronautics Supply Chains," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 615-631, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:2:d:10.1007_s10845-013-0866-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.