IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-016-1270-6.html
   My bibliography  Save this article

Automated optical inspection system for surface mount device light emitting diodes

Author

Listed:
  • Chung-Feng Jeffrey Kuo

    (National Taiwan University of Science and Technology)

  • Tz-ying Fang

    (National Taiwan University of Science and Technology)

  • Chi-Lung Lee

    (National Taiwan University of Science and Technology)

  • Han-Cheng Wu

    (National Taiwan University of Science and Technology)

Abstract

Surface-mount device light emitting diode (SMD-LED) is characterized by small size, wide viewing angle and light weight. It becomes the main package type of LED gradually. The traditional visual inspection is likely to cause misrecognition due to personal subjectivity and different defect recognition standards. Therefore, this study develops an automatic SMD-LED defect detection system, which is characterized by non-contact inspection, defect recognition standardization and upgrading product quality. It detects the common and important defects in LED package components, including missing component, no chip, wire shift and foreign material. In this study the gray scale characteristic of histogram is used as the rapid sieving analysis indicator of missing component defect, and then the component and solder joint are positioned by using fast normalized cross-correlation, and the maximum correlation coefficient value is used as judgment indicator of no chip defect. In order to overcome the difficult identification as the weld line is subject to light rays, the improved Michelson-like contrast (MLC) enhancement is proposed, and the segmentation threshold is selected by entropy information to segment the weld line successfully. Furthermore, in order to overcome the effect of the tolerance of component size and internal electrode and unfixed weld line position resulted from lead frame process on foreign material detection result, the multiscale adaptive Fourier analysis (MAFA) is proposed in the concept of texture anomaly detection for foreign material defect detection. The result proves that the proposed method can segment the defect effectively and correctly compared with the phase-only transform (PHOT) and multiscale phase-only transform (MPHOT), and it can be used in other fields of texture anomaly detection. The overall recognition rate of this system is 98.25%, contributing to the large market demand and high component quality of LED industry.

Suggested Citation

  • Chung-Feng Jeffrey Kuo & Tz-ying Fang & Chi-Lung Lee & Han-Cheng Wu, 2019. "Automated optical inspection system for surface mount device light emitting diodes," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 641-655, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1270-6
    DOI: 10.1007/s10845-016-1270-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1270-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1270-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Kai Cheng & Hung-Yin Tsai, 2022. "Enhanced detection of diverse defects by developing lighting strategies using multiple light sources based on reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2357-2369, December.
    2. Zheng Xiao & Zhenan Wang & Deng Liu & Hui Wang, 2022. "A path planning algorithm for PCB surface quality automatic inspection," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1829-1841, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    2. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    3. Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1270-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.