IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i4d10.1007_s10845-017-1344-0.html
   My bibliography  Save this article

A SAW wireless sensor network platform for industrial predictive maintenance

Author

Listed:
  • Bérenger Ossété Gombé

    (SENSeOR SAS, Besançon
    FEMTO-ST/Time and Frequency)

  • Gwenhael Goavec Mérou

    (FEMTO-ST/Time and Frequency)

  • Karla Breschi

    (FEMTO-ST/DISC)

  • Hervé Guyennet

    (FEMTO-ST/DISC)

  • Jean-Michel Friedt

    (SENSeOR SAS, Besançon
    FEMTO-ST/Time and Frequency)

  • Violeta Felea

    (FEMTO-ST/DISC)

  • Kamal Medjaher

    (Laboratoire Génie de Production/INP-ENIT)

Abstract

Predictive maintenance predicts the system health, based on the current condition, and defines the needed maintenance activities accordingly. This way, the system is only taken out of service if direct evidence exists that deterioration has actually taken place. This increases maintenance efficiency and productivity on one hand, and decreases maintenance support costs and logistics footprints on the other. We propose a system based on wireless sensor network to monitor industrial systems in order to prevent faults and damages. The sensors use the surface acoustic wave technology with an architecture composed of an electronic interrogation device and a passive sensor (without energy at the transducer) which is powered by the radio frequency transmitted by the interrogation unit. The radio frequency link transfers energy to the sensor to perform its measurement and to transmit the result to the interrogation unit—or in a description closer to the implemented, characterize the cooperative target cross section characteristics to recover the physical quantity defining the transducer material properties. We use this sensing architecture to measure the temperature of industrial machine components and we evaluate the robustness of the method. This technology can be applied to other physical parameters to be monitored. Captured information is transmitted to the base station through multi-hop communications. We also treat interferences involved in both interrogator to interrogator and sensor to interrogator communications.

Suggested Citation

  • Bérenger Ossété Gombé & Gwenhael Goavec Mérou & Karla Breschi & Hervé Guyennet & Jean-Michel Friedt & Violeta Felea & Kamal Medjaher, 2019. "A SAW wireless sensor network platform for industrial predictive maintenance," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1617-1628, April.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:4:d:10.1007_s10845-017-1344-0
    DOI: 10.1007/s10845-017-1344-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1344-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1344-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saneh Lata Yadav & R. L. Ujjwal, 2021. "Mitigating congestion in wireless sensor networks through clustering and queue assistance: a survey," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2083-2098, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    2. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    3. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    4. Wen, Pengfei & Zhao, Shuai & Chen, Shaowei & Li, Yong, 2021. "A generalized remaining useful life prediction method for complex systems based on composite health indicator," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
    6. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    7. Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    8. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    9. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    10. Younghoon Lee, 2022. "Identifying Competitive Attributes Based on an Ensemble of Explainable Artificial Intelligence," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(4), pages 407-419, August.
    11. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Kamran Javed & Rafael Gouriveau & Xiang Li & Noureddine Zerhouni, 2018. "Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1873-1890, December.
    13. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    14. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    15. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    16. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Kim, Taejin & Lee, Gueseok & Youn, Byeng D., 2019. "PHM experimental design for effective state separation using Jensen–Shannon divergence," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    19. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    20. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:4:d:10.1007_s10845-017-1344-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.