IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v27y2021i4d10.1007_s10732-021-09469-x.html
   My bibliography  Save this article

Analysis of Bayesian Network Learning Techniques for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm: a case study on MNK Landscape

Author

Listed:
  • Marcella S. R. Martins

    (Federal University of Technology - Paraná (UTFPR))

  • Mohamed El Yafrani

    (Aalborg University (AAU))

  • Myriam Delgado

    (Federal University of Technology - Paraná (UTFPR))

  • Ricardo Lüders

    (Federal University of Technology - Paraná (UTFPR))

  • Roberto Santana

    (University of the Basque Country (UPV/EHU))

  • Hugo V. Siqueira

    (Federal University of Technology - Paraná (UTFPR))

  • Huseyin G. Akcay

    (Akdeniz University (AKU))

  • Belaïd Ahiod

    (Mohammed V University in Rabat)

Abstract

This work investigates different Bayesian network structure learning techniques by thoroughly studying several variants of Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA), applied to the MNK Landscape combinatorial problem. In the experiments, we evaluate the performance considering three different aspects: optimization abilities, robustness and learning efficiency. Results for instances of multi- and many-objective MNK-landscape show that, score-based structure learning algorithms appear to be the best choice. In particular, HMOBEDA $$_{k2}$$ k 2 was capable of producing results comparable with the other variants in terms of the runtime of convergence and the coverage of the final Pareto front, with the additional advantage of providing solutions that are less sensible to noise while the variability of the corresponding Bayesian network models is reduced.

Suggested Citation

  • Marcella S. R. Martins & Mohamed El Yafrani & Myriam Delgado & Ricardo Lüders & Roberto Santana & Hugo V. Siqueira & Huseyin G. Akcay & Belaïd Ahiod, 2021. "Analysis of Bayesian Network Learning Techniques for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm: a case study on MNK Landscape," Journal of Heuristics, Springer, vol. 27(4), pages 549-573, August.
  • Handle: RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09469-x
    DOI: 10.1007/s10732-021-09469-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-021-09469-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-021-09469-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguirre, Hernan E. & Tanaka, Kiyoshi, 2007. "Working principles, behavior, and performance of MOEAs on MNK-landscapes," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1670-1690, September.
    2. Paulo S. G. de Mattos Neto & Manoel H. N. Marinho & Hugo Siqueira & Yara de Souza Tadano & Vivian Machado & Thiago Antonini Alves & João Fausto L. de Oliveira & Francisco Madeiro, 2020. "A Methodology to Increase the Accuracy of Particulate Matter Predictors Based on Time Decomposition," Sustainability, MDPI, vol. 12(18), pages 1-33, September.
    3. Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    2. Marcella S. R. Martins & Myriam R. B. S. Delgado & Ricardo Lüders & Roberto Santana & Richard A. Gonçalves & Carolina P. Almeida, 2018. "Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem," Journal of Heuristics, Springer, vol. 24(1), pages 25-47, February.
    3. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    4. Probst, Malte & Rothlauf, Franz & Grahl, Jörn, 2017. "Scalability of using Restricted Boltzmann Machines for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 256(2), pages 368-383.
    5. Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
    6. Ping Wang & Xuran He & Hongyinping Feng & Guisheng Zhang & Chenglu Rong, 2021. "A Hybrid Model for PM 2.5 Concentration Forecasting Based on Neighbor Structural Information, a Case in North China," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    7. Madalina M. Drugan, 2019. "Random walk’s correlation function for multi-objective NK landscapes and quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1213-1262, November.
    8. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    9. Zhenghua Liu & Qijun Xiao & Rong Li, 2023. "Full Coverage Hourly PM 2.5 Concentrations’ Estimation Using Himawari-8 and MERRA-2 AODs in China," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    10. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    11. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    12. Mădălina M. Drugan, 2018. "Scaling-up many-objective combinatorial optimization with Cartesian products of scalarization functions," Journal of Heuristics, Springer, vol. 24(2), pages 135-172, April.
    13. Verel, Sébastien & Liefooghe, Arnaud & Jourdan, Laetitia & Dhaenens, Clarisse, 2013. "On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives," European Journal of Operational Research, Elsevier, vol. 227(2), pages 331-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09469-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.