IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i2p331-342.html
   My bibliography  Save this article

On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives

Author

Listed:
  • Verel, Sébastien
  • Liefooghe, Arnaud
  • Jourdan, Laetitia
  • Dhaenens, Clarisse

Abstract

The structure of the search space explains the behavior of multiobjective search algorithms, and helps to design well-performing approaches. In this work, we analyze the properties of multiobjective combinatorial search spaces, and we pay a particular attention to the correlation between the objective functions. To do so, we extend the multiobjective NK-landscapes in order to take the objective correlation into account. We study the co-influence of the problem dimension, the degree of non-linearity, the number of objectives, and the objective correlation on the structure of the Pareto optimal set, in terms of cardinality and number of supported solutions, as well as on the number of Pareto local optima. This work concludes with guidelines for the design of multiobjective local search algorithms, based on the main fitness landscape features.

Suggested Citation

  • Verel, Sébastien & Liefooghe, Arnaud & Jourdan, Laetitia & Dhaenens, Clarisse, 2013. "On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives," European Journal of Operational Research, Elsevier, vol. 227(2), pages 331-342.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:331-342
    DOI: 10.1016/j.ejor.2012.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712009630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    2. Aguirre, Hernan E. & Tanaka, Kiyoshi, 2007. "Working principles, behavior, and performance of MOEAs on MNK-landscapes," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1670-1690, September.
    3. Paquete, Luis & Stutzle, Thomas, 2006. "A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices," European Journal of Operational Research, Elsevier, vol. 169(3), pages 943-959, March.
    4. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravshanbek Khodzhimatov & Stephan Leitner & Friederike Wall, 2021. "Interactions between social norms and incentive mechanisms in organizations," Papers 2102.12309, arXiv.org.
    2. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    3. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    4. Ravshanbek Khodzhimatov & Stephan Leitner & Friederike Wall, 2021. "On the effect of social norms on performance in teams with distributed decision makers," Papers 2104.05993, arXiv.org, revised Apr 2021.
    5. Madalina M. Drugan, 2019. "Random walk’s correlation function for multi-objective NK landscapes and quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1213-1262, November.
    6. Ravshanbek Khodzhimatov & Stephan Leitner & Friederike Wall, 2022. "Controlling replication via the belief system in multi-unit organizations," Papers 2206.03786, arXiv.org.
    7. Joop van de Heijning & Stephan Leitner & Alexandra Rausch, 2020. "On the Effectiveness of Minisum Approval Voting in an Open Strategy Setting: An Agent-Based Approach," Papers 2009.04912, arXiv.org, revised Sep 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    2. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.
    3. Mădălina M. Drugan, 2018. "Scaling-up many-objective combinatorial optimization with Cartesian products of scalarization functions," Journal of Heuristics, Springer, vol. 24(2), pages 135-172, April.
    4. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    5. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    6. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    7. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    8. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    9. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    10. Hanne, Thomas, 2007. "A multiobjective evolutionary algorithm for approximating the efficient set," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1723-1734, February.
    11. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    12. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    13. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    14. Matthias Müller-Hannemann & Karsten Weihe, 2006. "On the cardinality of the Pareto set in bicriteria shortest path problems," Annals of Operations Research, Springer, vol. 147(1), pages 269-286, October.
    15. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2020. "Multi-objective evolutionary algorithms for a reliability location problem," European Journal of Operational Research, Elsevier, vol. 283(1), pages 83-93.
    16. Allmendinger, Richard & Handl, Julia & Knowles, Joshua, 2015. "Multiobjective optimization: When objectives exhibit non-uniform latencies," European Journal of Operational Research, Elsevier, vol. 243(2), pages 497-513.
    17. Breugem, T. & Dollevoet, T.A.B. & van den Heuvel, W., 2016. "Analysis of FPTASes for the Multi-Objective Shortest Path Problem," Econometric Institute Research Papers EI2016-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    19. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    20. Doerner, K.F. & Gutjahr, W.J. & Hartl, R.F. & Strauss, C. & Stummer, C., 2008. "Nature-inspired metaheuristics for multiobjective activity crashing," Omega, Elsevier, vol. 36(6), pages 1019-1037, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:331-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.