Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10732-017-9356-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
- Probst, Malte & Rothlauf, Franz & Grahl, Jörn, 2017. "Scalability of using Restricted Boltzmann Machines for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 256(2), pages 368-383.
- Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
- Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
- Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
- Marcella S. R. Martins & Mohamed El Yafrani & Myriam Delgado & Ricardo Lüders & Roberto Santana & Hugo V. Siqueira & Huseyin G. Akcay & Belaïd Ahiod, 2021. "Analysis of Bayesian Network Learning Techniques for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm: a case study on MNK Landscape," Journal of Heuristics, Springer, vol. 27(4), pages 549-573, August.
More about this item
Keywords
Multi-objective estimation of distribution algorithms; Probabilistic modeling; Local search; Hybridization; Automatic algorithm configuration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:1:d:10.1007_s10732-017-9356-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.