IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v176y2007i3p1723-1734.html
   My bibliography  Save this article

A multiobjective evolutionary algorithm for approximating the efficient set

Author

Listed:
  • Hanne, Thomas

Abstract

No abstract is available for this item.

Suggested Citation

  • Hanne, Thomas, 2007. "A multiobjective evolutionary algorithm for approximating the efficient set," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1723-1734, February.
  • Handle: RePEc:eee:ejores:v:176:y:2007:i:3:p:1723-1734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00863-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanne, Thomas, 1999. "On the convergence of multiobjective evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 117(3), pages 553-564, September.
    2. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    3. Gal, Tomas, 1986. "On efficient sets in vector maximum problems -- A brief survey," European Journal of Operational Research, Elsevier, vol. 24(2), pages 253-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    2. Wang, Yujia & Yang, Yupu, 2010. "Particle swarm with equilibrium strategy of selection for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 200(1), pages 187-197, January.
    3. Chen, Jianyong & Lin, Qiuzhen & Ji, Zhen, 2010. "A hybrid immune multiobjective optimization algorithm," European Journal of Operational Research, Elsevier, vol. 204(2), pages 294-302, July.
    4. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    5. Chen, Min-Rong & Lu, Yong-Zai, 2008. "A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 637-651, August.
    6. Kaliszewski, Ignacy & Miroforidis, Janusz & Podkopaev, Dmitry, 2012. "Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy," European Journal of Operational Research, Elsevier, vol. 216(1), pages 188-199.
    7. I. Kaliszewski & J. Miroforidis, 2014. "Two-Sided Pareto Front Approximations," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 845-855, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanne, Thomas & Nickel, Stefan, 2005. "A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects," European Journal of Operational Research, Elsevier, vol. 167(3), pages 663-678, December.
    2. Aritra Pal & Hadi Charkhgard, 2019. "A Feasibility Pump and Local Search Based Heuristic for Bi-Objective Pure Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 115-133, February.
    3. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    4. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    5. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    6. M. Ehrgott & J. Puerto & A. M. Rodríguez-Chía, 2007. "Primal-Dual Simplex Method for Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 483-497, September.
    7. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    8. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    9. Luis Paquete & Tommaso Schiavinotto & Thomas Stützle, 2007. "On local optima in multiobjective combinatorial optimization problems," Annals of Operations Research, Springer, vol. 156(1), pages 83-97, December.
    10. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    11. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    12. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    13. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    14. Abdelaziz, F. Ben & Lang, P. & Nadeau, R., 1995. "Distributional efficiency in multiobjective stochastic linear programming," European Journal of Operational Research, Elsevier, vol. 85(2), pages 399-415, September.
    15. H. Edwin Romeijn & Dolores Romero Morales & Wilco Van den Heuvel, 2014. "Computational complexity of finding Pareto efficient outcomes for biobjective lot‐sizing models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 386-402, August.
    16. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    17. Alcaraz, Javier & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2020. "Multi-objective evolutionary algorithms for a reliability location problem," European Journal of Operational Research, Elsevier, vol. 283(1), pages 83-93.
    18. Kallio, Markku & Halme, Merja, 2013. "Cone contraction and reference point methods for multi-criteria mixed integer optimization," European Journal of Operational Research, Elsevier, vol. 229(3), pages 645-653.
    19. Perugia, Alessandro & Moccia, Luigi & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Designing a home-to-work bus service in a metropolitan area," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1710-1726.
    20. Doerner, K.F. & Gutjahr, W.J. & Hartl, R.F. & Strauss, C. & Stummer, C., 2006. "Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection," European Journal of Operational Research, Elsevier, vol. 171(3), pages 830-841, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:176:y:2007:i:3:p:1723-1734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.