IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v167y2005i3p663-678.html
   My bibliography  Save this article

A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects

Author

Listed:
  • Hanne, Thomas
  • Nickel, Stefan

Abstract

No abstract is available for this item.

Suggested Citation

  • Hanne, Thomas & Nickel, Stefan, 2005. "A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects," European Journal of Operational Research, Elsevier, vol. 167(3), pages 663-678, December.
  • Handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:663-678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00471-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanne, Thomas, 1999. "On the convergence of multiobjective evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 117(3), pages 553-564, September.
    2. Gal, Tomas, 1986. "On efficient sets in vector maximum problems -- A brief survey," European Journal of Operational Research, Elsevier, vol. 24(2), pages 253-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vega-Velázquez, Miguel Ángel & García-Nájera, Abel & Cervantes, Humberto, 2018. "A survey on the Software Project Scheduling Problem," International Journal of Production Economics, Elsevier, vol. 202(C), pages 145-161.
    2. Corominas, Albert & Olivella, Jordi & Pastor, Rafael, 2010. "A model for the assignment of a set of tasks when work performance depends on experience of all tasks involved," International Journal of Production Economics, Elsevier, vol. 126(2), pages 335-340, August.
    3. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    4. Jose-Luis Molina & Raziyeh Farmani & John Bromley, 2011. "Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3883-3909, November.
    5. KIlIç, Murat & Ulusoy, Gündüz & Serifoglu, Funda Sivrikaya, 2008. "A bi-objective genetic algorithm approach to risk mitigation in project scheduling," International Journal of Production Economics, Elsevier, vol. 112(1), pages 202-216, March.
    6. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    7. Tiwari, Vikram & Patterson, James H. & Mabert, Vincent A., 2009. "Scheduling projects with heterogeneous resources to meet time and quality objectives," European Journal of Operational Research, Elsevier, vol. 193(3), pages 780-790, March.
    8. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanne, Thomas, 2007. "A multiobjective evolutionary algorithm for approximating the efficient set," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1723-1734, February.
    2. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    3. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    4. Rommel G. Regis, 2016. "On the Convergence of Adaptive Stochastic Search Methods for Constrained and Multi-objective Black-Box Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 932-959, September.
    5. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    6. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    7. Abdelaziz, F. Ben & Lang, P. & Nadeau, R., 1995. "Distributional efficiency in multiobjective stochastic linear programming," European Journal of Operational Research, Elsevier, vol. 85(2), pages 399-415, September.
    8. Hanne, Thomas, 1999. "On the convergence of multiobjective evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 117(3), pages 553-564, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:167:y:2005:i:3:p:663-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.