IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v46y2017i2d10.1007_s00182-016-0548-4.html
   My bibliography  Save this article

The preferences of Homo Moralis are unstable under evolving assortativity

Author

Listed:
  • Jonathan Newton

    (University of Sydney)

Abstract

Differing degrees of assortativity in matching can be expected to have both genetic and cultural determinants. When assortativity is subject to evolution, the main result of Alger and Weibull (Econometrica 81:2269–2302 2013) on the evolution of stable other-regarding preferences does not hold. Instead, both non-Nash and Pareto inefficient behavior are evolutionarily unstable.

Suggested Citation

  • Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
  • Handle: RePEc:spr:jogath:v:46:y:2017:i:2:d:10.1007_s00182-016-0548-4
    DOI: 10.1007/s00182-016-0548-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-016-0548-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-016-0548-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bomze Immanuel M. & Weibull Jorgen W., 1995. "Does Neutral Stability Imply Lyapunov Stability?," Games and Economic Behavior, Elsevier, vol. 11(2), pages 173-192, November.
    2. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    3. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    4. Ingela Alger & Jörgen W. Weibull, 2013. "Homo Moralis—Preference Evolution Under Incomplete Information and Assortative Matching," Econometrica, Econometric Society, vol. 81(6), pages 2269-2302, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusch, Hannes, 2019. "The evolution of collaboration in symmetric 2×2-games with imperfect recognition of types," Games and Economic Behavior, Elsevier, vol. 114(C), pages 118-127.
    2. Ennio Bilancini & Leonardo Boncinelli & Eugenio Vicario, 2022. "Assortativity in cognition," Working Papers - Economics wp2022_11.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    3. Ennio Bilancini & Leonardo Boncinelli & Alessandro Tampieri, 2021. "Strategy Assortativity and the Evolution of Parochialism," DEM Discussion Paper Series 21-20, Department of Economics at the University of Luxembourg.
    4. Martin Kaae Jensen & Alexandros Rigos, 2018. "Evolutionary games and matching rules," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 707-735, September.
    5. Ziwei Wang & Jiabin Wu, 2023. "Partner Choice and Morality: Preference Evolution under Stable Matching," Papers 2304.11504, arXiv.org, revised Oct 2023.
    6. Alger, Ingela & Weibull, Jörgen W. & Lehmann, Laurent, 2020. "Evolution of preferences in structured populations: Genes, guns, and culture," Journal of Economic Theory, Elsevier, vol. 185(C).
    7. Heinrich H. Nax & Ryan O. Murphy & Stefano Duca & Dirk Helbing, 2017. "Contribution-Based Grouping under Noise," Games, MDPI, vol. 8(4), pages 1-23, November.
    8. Nax, Heinrich H. & Rigos, Alexandros, 2015. "Assortativity evolving from social dilemmas," LSE Research Online Documents on Economics 65447, London School of Economics and Political Science, LSE Library.
    9. Jiabin Wu, 2016. "Evolving assortativity and social conventions," Economics Bulletin, AccessEcon, vol. 36(2), pages 936-941.
    10. Jiabin Wu, 2021. "Matching markets and cultural selection," Review of Economic Design, Springer;Society for Economic Design, vol. 25(4), pages 267-288, December.
    11. Wu, Jiabin, 2023. "Institutions, assortative matching and cultural evolution," European Journal of Political Economy, Elsevier, vol. 78(C).
    12. Xu, Hedong & Fan, Suohai & Tian, Cunzhi & Xiao, Xinrong, 2019. "Effect of strategy-assortativity on investor sharing games in the market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 211-225.
    13. Sethi, Rajiv, 2021. "Stable sampling in repeated games," Journal of Economic Theory, Elsevier, vol. 197(C).
    14. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    15. Newton, Jonathan, 2017. "Shared intentions: The evolution of collaboration," Games and Economic Behavior, Elsevier, vol. 104(C), pages 517-534.
    16. Wu, Jiabin, 2018. "Entitlement to assort: Democracy, compromise culture and economic stability," Economics Letters, Elsevier, vol. 163(C), pages 146-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    4. Newton, Jonathan, 2017. "Shared intentions: The evolution of collaboration," Games and Economic Behavior, Elsevier, vol. 104(C), pages 517-534.
    5. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    6. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    7. Blath, Jochen & Paul, Tobias & Tóbiás, András & Wilke Berenguer, Maite, 2024. "The impact of dormancy on evolutionary branching," Theoretical Population Biology, Elsevier, vol. 156(C), pages 66-76.
    8. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    9. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    11. Costa, Carolina L.N. & Marquitti, Flavia M.D. & Perez, S. Ivan & Schneider, David M. & Ramos, Marlon F. & de Aguiar, Marcus A.M., 2018. "Registering the evolutionary history in individual-based models of speciation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 1-14.
    12. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    13. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    14. Heller, Yuval & Mohlin, Erik, 2019. "Coevolution of deception and preferences: Darwin and Nash meet Machiavelli," Games and Economic Behavior, Elsevier, vol. 113(C), pages 223-247.
    15. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    16. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.
    17. Ziwei Wang & Jiabin Wu, 2023. "Partner Choice and Morality: Preference Evolution under Stable Matching," Papers 2304.11504, arXiv.org, revised Oct 2023.
    18. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    19. György Barabás & Christine Parent & Andrew Kraemer & Frederik Perre & Frederik Laender, 2022. "The evolution of trait variance creates a tension between species diversity and functional diversity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.

    More about this item

    Keywords

    Evolution; Moral values; Assortative matching;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:46:y:2017:i:2:d:10.1007_s00182-016-0548-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.