IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/700.html
   My bibliography  Save this paper

Evolutionary Dynamics and Fast Convergence in the Assignment Game

Author

Listed:
  • Bary S.R. Pradelski

Abstract

We study decentralized learning dynamics for the classic assignment game with transferable utility. At random points in time firms and workers match, break up, and re-match in the sesarch for better opportunities. We propose a simple learning process in which players have no knowledge about other players' payoffs or actions and they update their behavior in a myopic fashion. Behavior fluctuates according to a random variable that reflects current market conditions: sometimes the firms exhibit greater price stickiness than the workers, and at other times the reverse holds. We show that this stochastic learning process converges in polynomial time to the core. While convergence to the core is known for some types of decentralized dynamics this paper is the first to prove fast convergence, a crucial feature from a practical standpoint. The proof relies on novel results for random walks on graphs, and more generally suggests a fruitful connection between the theory of random walks and matching theory.

Suggested Citation

  • Bary S.R. Pradelski, 2014. "Evolutionary Dynamics and Fast Convergence in the Assignment Game," Economics Series Working Papers 700, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:700
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:f5acf754-310c-4b9f-8526-5f71e68cd4d1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rozen, Kareen, 2008. "Conflict Leads to Cooperation in Nash Bargaining," Working Papers 39, Yale University, Department of Economics.
    2. Chung, Kim-Sau, 2000. "On the Existence of Stable Roommate Matchings," Games and Economic Behavior, Elsevier, vol. 33(2), pages 206-230, November.
    3. Klaus, Bettina & Klijn, Flip, 2007. "Paths to stability for matching markets with couples," Games and Economic Behavior, Elsevier, vol. 58(1), pages 154-171, January.
    4. Agastya, Murali, 1999. "Perturbed Adaptive Dynamics in Coalition Form Games," Journal of Economic Theory, Elsevier, vol. 89(2), pages 207-233, December.
    5. Crawford, Vincent P & Knoer, Elsie Marie, 1981. "Job Matching with Heterogeneous Firms and Workers," Econometrica, Econometric Society, vol. 49(2), pages 437-450, March.
    6. Sawa, Ryoji, 2014. "Coalitional stochastic stability in games, networks and markets," Games and Economic Behavior, Elsevier, vol. 88(C), pages 90-111.
    7. Peter Biro & Matthijs Bomhoff & Walter Kern & Petr A. Golovach & Daniel Paulusma, 2012. "Solutions for the Stable Roommates Problem with Payments," CERS-IE WORKING PAPERS 1211, Institute of Economics, Centre for Economic and Regional Studies.
    8. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    9. Diamantoudi, Effrosyni & Miyagawa, Eiichi & Xue, Licun, 2004. "Random paths to stability in the roommate problem," Games and Economic Behavior, Elsevier, vol. 48(1), pages 18-28, July.
    10. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    11. Bo Chen & Satoru Fujishige & Zaifu Yang, 2010. "Decentralized Market Processes to Stable Job Matchings with Competitive Salaries," KIER Working Papers 749, Kyoto University, Institute of Economic Research.
    12. Murali Agastya, 1997. "Adaptive Play in Multiplayer Bargaining Situations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(3), pages 411-426.
    13. Marek Pycia, 2012. "Stability and Preference Alignment in Matching and Coalition Formation," Econometrica, Econometric Society, vol. 80(1), pages 323-362, January.
    14. Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, Econometric Society, vol. 50(6), pages 1483-1504, November.
    15. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, December.
    16. Robert Shimer, 2008. "The Probability of Finding a Job," American Economic Review, American Economic Association, vol. 98(2), pages 268-273, May.
    17. Arnold, Tone & Schwalbe, Ulrich, 2002. "Dynamic coalition formation and the core," Journal of Economic Behavior & Organization, Elsevier, vol. 49(3), pages 363-380, November.
    18. Newton, Jonathan, 2012. "Recontracting and stochastic stability in cooperative games," Journal of Economic Theory, Elsevier, vol. 147(1), pages 364-381.
    19. Fuhito Kojima & M. Ünver, 2008. "Random paths to pairwise stability in many-to-many matching problems: a study on market equilibration," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 473-488, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakov Babichenko, 2018. "Fast Convergence of Best-Reply Dynamics in Aggregative Games," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 333-346, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    2. Nax, Heinrich H. & Pradelski, Bary S. R., 2015. "Evolutionary dynamics and equitable core selection in assignment games," LSE Research Online Documents on Economics 65428, London School of Economics and Political Science, LSE Library.
    3. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    4. Heinrich H. Nax & Bary S. R. Pradelski, 2016. "Core Stability and Core Selection in a Decentralized Labor Matching Market," Games, MDPI, vol. 7(2), pages 1-16, March.
    5. Heinrich H. Nax & Bary S.R. Pradelski, 2012. "Evolutionary dynamics and equitable core selection in assignment games," Economics Series Working Papers 607, University of Oxford, Department of Economics.
    6. Klaus, Bettina & Newton, Jonathan, 2016. "Stochastic stability in assignment problems," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 62-74.
    7. Heinrich H. Nax & Bary S. R. Pradelski & H. Peyton Young, 2013. "The Evolution of Core Stability in Decentralized Matching Markets," Working Papers 2013.50, Fondazione Eni Enrico Mattei.
    8. Newton, Jonathan & Sawa, Ryoji, 2015. "A one-shot deviation principle for stability in matching problems," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1-27.
    9. Satoru Fujishige & Zaifu Yang, 2017. "On a spontaneous decentralized market process," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 2(1), pages 1-37, December.
    10. Emiliya Lazarova & Dinko Dimitrov, 2017. "Paths to stability in two-sided matching under uncertainty," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 29-49, March.
    11. Bo Chen & Satoru Fujishige & Zaifu Yang, 2010. "Decentralized Market Processes to Stable Job Matchings with Competitive Salaries," KIER Working Papers 749, Kyoto University, Institute of Economic Research.
    12. Sawa, Ryoji, 2019. "Stochastic stability under logit choice in coalitional bargaining problems," Games and Economic Behavior, Elsevier, vol. 113(C), pages 633-650.
    13. Bettina Klaus & Frédéric Payot, 2013. "Paths to Stability in the Assignment Problem," Cahiers de Recherches Economiques du Département d'économie 13.14, Université de Lausanne, Faculté des HEC, Département d’économie.
    14. Hideo Konishi & M. Utku Ünver, 2003. "Credible Group Stability in Multi-Partner Matching Problems," Working Papers 2003.115, Fondazione Eni Enrico Mattei.
    15. Chen, Bo & Fujishige, Satoru & Yang, Zaifu, 2016. "Random decentralized market processes for stable job matchings with competitive salaries," Journal of Economic Theory, Elsevier, vol. 165(C), pages 25-36.
    16. Azar Abizada, 2017. "Paths to stability for college admissions with budget constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(3), pages 879-890, August.
    17. Satoru Fujishige & Zaifu Yang, 2015. "Decentralised Random Competitive Dynamic Market Processes," Discussion Papers 15/27, Department of Economics, University of York.
    18. Mauleon, Ana & Roehl, Nils & Vannetelbosch, Vincent, 2019. "Paths to stability for overlapping group structures," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 19-24.
    19. Maria Montero & Alex Possajennikov, 2021. "An Adaptive Model of Demand Adjustment in Weighted Majority Games," Games, MDPI, vol. 13(1), pages 1-17, December.
    20. Khan, Abhimanyu, 2022. "Expected utility versus cumulative prospect theory in an evolutionary model of bargaining," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).

    More about this item

    Keywords

    assignment games; core; evolutionary game theory; matching markets; convergence time; random walks;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.