IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v49y2021i4d10.1007_s11747-021-00769-z.html
   My bibliography  Save this article

Online program engagement and audience size during television ads

Author

Listed:
  • Beth L. Fossen

    (Indiana University)

  • Alexander Bleier

    (Frankfurt School of Finance & Management)

Abstract

This research explores how television viewers’ online program engagement (OPE)—engagement in social media conversations about television programs—relates to audience size during ads in those programs. We leverage a multisource dataset of 8417 ad instances, volume and deviation measures of OPE activity (program-related Twitter mentions), and audience size during ads. We show that increases in OPE volume and positive deviations from the episode’s average level of OPE before an ad relate to higher ad audience size. To explain, we argue that OPE reflects viewers’ program involvement which attenuates their channel-changing behavior during ads. Positive OPE deviations moreover relate to higher ad audience sizes most strongly for earlier ads in a break. Our results help television networks and advertisers strategically determine ad placements for increased ad audience size by highlighting social episodes (characterized by high OPE volume) and social moments (characterized by positive OPE deviations) as attractive advertising environments.

Suggested Citation

  • Beth L. Fossen & Alexander Bleier, 2021. "Online program engagement and audience size during television ads," Journal of the Academy of Marketing Science, Springer, vol. 49(4), pages 743-761, July.
  • Handle: RePEc:spr:joamsc:v:49:y:2021:i:4:d:10.1007_s11747-021-00769-z
    DOI: 10.1007/s11747-021-00769-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-021-00769-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-021-00769-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hauke A. Wetzel & Stefan Hattula & Maik Hammerschmidt & Harald J. Heerde, 2018. "Building and leveraging sports brands: evidence from 50 years of German professional soccer," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 591-611, July.
    2. Jonah Berger & Alan T. Sorensen & Scott J. Rasmussen, 2010. "Positive Effects of Negative Publicity: When Negative Reviews Increase Sales," Marketing Science, INFORMS, vol. 29(5), pages 815-827, 09-10.
    3. Jonah Berger & Raghuram Iyengar, 2013. "Communication Channels and Word of Mouth: How the Medium Shapes the Message," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 40(3), pages 567-579.
    4. Paul Gustafson & S. Siddarth, 2007. "Describing the Dynamics of Attention to TV Commercials: A Hierarchical Bayes Analysis of the Time to Zap an Ad," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(5), pages 585-609.
    5. Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.
    6. S. Siddarth & Amitava Chattopadhyay, 1998. "To Zap or Not to Zap: A Study of the Determinants of Channel Switching During Commercials," Marketing Science, INFORMS, vol. 17(2), pages 124-138.
    7. Anna E. Tuchman & Harikesh S. Nair & Pedro M. Gardete, 2018. "Television ad-skipping, consumption complementarities and the consumer demand for advertising," Quantitative Marketing and Economics (QME), Springer, vol. 16(2), pages 111-174, June.
    8. Kenneth C. Wilbur & Linli Xu & David Kempe, 2013. "Correcting Audience Externalities in Television Advertising," Marketing Science, INFORMS, vol. 32(6), pages 892-912, November.
    9. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    10. Romain Cadario, 2015. "The impact of online word-of-mouth on television show viewership: An inverted U-shaped temporal dynamic," Marketing Letters, Springer, vol. 26(4), pages 411-422, December.
    11. Guitart, Ivan A. & Gonzalez, Jorge & Stremersch, Stefan, 2018. "Advertising non-premium products as if they were premium: The impact of advertising up on advertising elasticity and brand equity," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 471-489.
    12. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    13. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    14. Calder, Bobby J. & Malthouse, Edward C. & Schaedel, Ute, 2009. "An Experimental Study of the Relationship between Online Engagement and Advertising Effectiveness," Journal of Interactive Marketing, Elsevier, vol. 23(4), pages 321-331.
    15. Zaichkowsky, Judith Lynne, 1985. "Measuring the Involvement Construct," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(3), pages 341-352, December.
    16. Thales Teixeira & Rosalind Picard & Rana el Kaliouby, 2014. "Why, When, and How Much to Entertain Consumers in Advertisements? A Web-Based Facial Tracking Field Study," Marketing Science, INFORMS, vol. 33(6), pages 809-827, November.
    17. David A. Schweidel & Natasha Zhang Foutz & Robin J. Tanner, 2014. "Synergy or Interference: The Effect of Product Placement on Commercial Break Audience Decline," Marketing Science, INFORMS, vol. 33(6), pages 763-780, November.
    18. Beth L. Fossen & David A. Schweidel, 2017. "Television Advertising and Online Word-of-Mouth: An Empirical Investigation of Social TV Activity," Marketing Science, INFORMS, vol. 36(1), pages 105-123, January.
    19. Celsi, Richard L & Olson, Jerry C, 1988. "The Role of Involvement in Attention and Comprehension Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 15(2), pages 210-224, September.
    20. Kenneth C. Wilbur, 2016. "Advertising Content and Television Advertising Avoidance," Journal of Media Economics, Taylor & Francis Journals, vol. 29(2), pages 51-72, April.
    21. Mitchell J. Lovett & Richard Staelin, 2016. "The Role of Paid, Earned, and Owned Media in Building Entertainment Brands: Reminding, Informing, and Enhancing Enjoyment," Marketing Science, INFORMS, vol. 35(1), pages 142-157, January.
    22. Beth L. Fossen & Girish Mallapragada & Anwesha De, 2021. "Impact of Political Television Advertisements on Viewers’ Response to Subsequent Advertisements," Marketing Science, INFORMS, vol. 40(2), pages 305-324, March.
    23. Mathys, Juliane & Burmester, Alexa B. & Clement, Michel, 2016. "What drives the market popularity of celebrities? A longitudinal analysis of consumer interest in film stars," International Journal of Research in Marketing, Elsevier, vol. 33(2), pages 428-448.
    24. Stephan Seiler & Song Yao & Wenbo Wang, 2017. "Does Online Word of Mouth Increase Demand? (And How?) Evidence from a Natural Experiment," Marketing Science, INFORMS, vol. 36(6), pages 838-861, November.
    25. Ivan Guitart & Jorge Gonzalez & Stefan Stremersch, 2018. "Advertising non-premium products as if they were premium : The impact of advertising up on advertising elasticity and brand equity," Post-Print hal-02312175, HAL.
    26. Jung Ah Han & Elea McDonnell Feit & Shuba Srinivasan, 2020. "Can negative buzz increase awareness and purchase intent?," Marketing Letters, Springer, vol. 31(1), pages 89-104, March.
    27. Beth L. Fossen & David A. Schweidel, 2019. "Social TV, Advertising, and Sales: Are Social Shows Good for Advertisers?," Marketing Science, INFORMS, vol. 38(2), pages 274-295, March.
    28. Torsten Bornemann & Cornelia Hattula & Stefan Hattula, 2020. "Successive product generations: financial implications of industry release rhythm alignment," Journal of the Academy of Marketing Science, Springer, vol. 48(6), pages 1174-1191, November.
    29. Cristel Antonia Russell & Sidney J. Levy, 2012. "The Temporal and Focal Dynamics of Volitional Reconsumption: A Phenomenological Investigation of Repeated Hedonic Experiences," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 39(2), pages 341-359.
    30. Thales S. Teixeira & Michel Wedel & Rik Pieters, 2010. "Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing," Marketing Science, INFORMS, vol. 29(5), pages 783-804, 09-10.
    31. Patricia Phalen, 1998. "The Market Information System and Personalized Exchange: Business Practices in the Market for Television Audiences," Journal of Media Economics, Taylor & Francis Journals, vol. 11(4), pages 17-34.
    32. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaista Tariq & Saad Akhtar & Faria & Meer Bilawal & Tabassum Zubair & Amna Munir & Syeda Zeerak & Sajjad Ahmed, 2024. "Effects of Spoiler on the Attraction of Forthcoming Web Series and Viewership," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(2), pages 341-349.
    2. Alina Sorescu & Martin Schreier, 2021. "Innovation in the digital economy: a broader view of its scope, antecedents, and consequences," Journal of the Academy of Marketing Science, Springer, vol. 49(4), pages 627-631, July.
    3. Abhishek Borah & Francesca Bonetti & Angelito Calma & José Martí-Parreño, 2023. "The Journal of the Academy of Marketing Science at 50: A historical analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(1), pages 222-243, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beth L. Fossen & David A. Schweidel, 2019. "Social TV, Advertising, and Sales: Are Social Shows Good for Advertisers?," Marketing Science, INFORMS, vol. 38(2), pages 274-295, March.
    2. Matthew McGranaghan & Jura Liaukonyte & Kenneth C. Wilbur, 2022. "How Viewer Tuning, Presence, and Attention Respond to Ad Content and Predict Brand Search Lift," Marketing Science, INFORMS, vol. 41(5), pages 873-895, September.
    3. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    4. Beth L. Fossen & David A. Schweidel, 2017. "Television Advertising and Online Word-of-Mouth: An Empirical Investigation of Social TV Activity," Marketing Science, INFORMS, vol. 36(1), pages 105-123, January.
    5. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    6. Beth L. Fossen & Girish Mallapragada & Anwesha De, 2021. "Impact of Political Television Advertisements on Viewers’ Response to Subsequent Advertisements," Marketing Science, INFORMS, vol. 40(2), pages 305-324, March.
    7. Yi-Lin Tsai & Elisabeth Honka, 2021. "Informational and Noninformational Advertising Content," Marketing Science, INFORMS, vol. 40(6), pages 1030-1058, November.
    8. Beth L. Fossen & David A. Schweidel, 2019. "Measuring the Impact of Product Placement with Brand-Related Social Media Conversations and Website Traffic," Marketing Science, INFORMS, vol. 38(3), pages 481-499, May.
    9. Vasu Unnava & Ashwin Aravindakshan, 2021. "How does consumer engagement evolve when brands post across multiple social media?," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 864-881, September.
    10. Yuxin Chen & Qihong Liu, 2022. "Signaling Through Advertising When an Ad Can Be Blocked," Marketing Science, INFORMS, vol. 41(1), pages 166-187, January.
    11. Anna E. Tuchman & Harikesh S. Nair & Pedro M. Gardete, 2018. "Television ad-skipping, consumption complementarities and the consumer demand for advertising," Quantitative Marketing and Economics (QME), Springer, vol. 16(2), pages 111-174, June.
    12. Xingyu Chen & Xing Li & Dai Yao & Zhimin Zhou, 2019. "Seeking the support of the silent majority: are lurking users valuable to UGC platforms?," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 986-1004, November.
    13. Jang, Seongsoo & Chung, Jaihak & Rao, Vithala R., 2021. "The importance of functional and emotional content in online consumer reviews for product sales: Evidence from the mobile gaming market," Journal of Business Research, Elsevier, vol. 130(C), pages 583-593.
    14. Becker, Maren & Gijsenberg, Maarten J., 2023. "Consistency and commonality in advertising content: Helping or Hurting?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 128-145.
    15. Kenneth C. Wilbur, 2016. "Advertising Content and Television Advertising Avoidance," Journal of Media Economics, Taylor & Francis Journals, vol. 29(2), pages 51-72, April.
    16. Ivan A. Guitart & Guillaume Hervet & Sarah Gelper, 2020. "Competitive advertising strategies for programmatic television," Journal of the Academy of Marketing Science, Springer, vol. 48(4), pages 753-775, July.
    17. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    18. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.
    19. Henriques, David, 2020. "Effects of TV airtime regulation on advertising quality and welfare," LSE Research Online Documents on Economics 106963, London School of Economics and Political Science, LSE Library.
    20. Stijn Maesen & Lien Lamey & Anne ter Braak & Léon Jansen, 2022. "Going healthy: how product characteristics influence the sales impact of front-of-pack health symbols," Journal of the Academy of Marketing Science, Springer, vol. 50(1), pages 108-130, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:49:y:2021:i:4:d:10.1007_s11747-021-00769-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.