IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v29y2010i5p783-804.html
   My bibliography  Save this article

Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing

Author

Listed:
  • Thales S. Teixeira

    (Marketing Unit, Harvard Business School, Boston, Massachusetts 02163)

  • Michel Wedel

    (Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Rik Pieters

    (Department of Marketing, Tilburg University, 5000 LE Tilburg, The Netherlands)

Abstract

We develop a conceptual framework about the impact that branding activity (the audiovisual representation of brands) and consumers' focused versus dispersed attention have on consumer moment-to-moment avoidance decisions during television advertising. We formalize this framework in a dynamic probit model and estimate it with Markov chain Monte Carlo methods. Data on avoidance through zapping, along with eye tracking on 31 commercials for nearly 2,000 participants, are used to calibrate the model. New, simple metrics of attention dispersion are shown to strongly predict avoidance. Independent of this, central on-screen brand positions, but not brand size, further promote commercial avoidance. Based on the model estimation, we optimize the branding activity that is under marketing control for ads in the sample to reduce commercial avoidance. This reveals that brand pulsing--while keeping total brand exposure constant--decreases commercial avoidance significantly. Both numerical simulations and a controlled experiment using regular and edited commercials, respectively, provide evidence of the benefits of brand pulsing to ward off commercial avoidance. Implications for advertising management and theory are addressed.

Suggested Citation

  • Thales S. Teixeira & Michel Wedel & Rik Pieters, 2010. "Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing," Marketing Science, INFORMS, vol. 29(5), pages 783-804, 09-10.
  • Handle: RePEc:inm:ormksc:v:29:y:2010:i:5:p:783-804
    DOI: 10.1287/mksc.1100.0567
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1100.0567
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1100.0567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin, Andrew D. & Quinn, Kevin M., 2002. "Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999," Political Analysis, Cambridge University Press, vol. 10(2), pages 134-153, April.
    2. Sueyoshi, Glenn T, 1995. "A Class of Binary Response Models for Grouped Duration Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 411-431, Oct.-Dec..
    3. Paul Gustafson & S. Siddarth, 2007. "Describing the Dynamics of Attention to TV Commercials: A Hierarchical Bayes Analysis of the Time to Zap an Ad," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(5), pages 585-609.
    4. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
    5. Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 57-81, March.
    6. Michel Wedel & Rik Pieters, 2000. "Eye Fixations on Advertisements and Memory for Brands: A Model and Findings," Marketing Science, INFORMS, vol. 19(4), pages 297-312, October.
    7. Fred M. Feinberg, 2001. "On Continuous-Time Optimal Advertising Under S-Shaped Response," Management Science, INFORMS, vol. 47(11), pages 1476-1487, November.
    8. S. Siddarth & Amitava Chattopadhyay, 1998. "To Zap or Not to Zap: A Study of the Determinants of Channel Switching During Commercials," Marketing Science, INFORMS, vol. 17(2), pages 124-138.
    9. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    10. Minhi Hahn & Jin-Sok Hyun, 1991. "Advertising Cost Interactions and the Optimality of Pulsing," Management Science, INFORMS, vol. 37(2), pages 157-169, February.
    11. Monica Billio & Roberto Casarin & Domenico Sartore, 2007. "Bayesian Inference on Dynamic Models with Latent Factors," Working Papers 2007_34, Department of Economics, University of Venice "Ca' Foscari".
    12. Rik Pieters & Michel Wedel, 2007. "Goal Control of Attention to Advertising: The Yarbus Implication," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(2), pages 224-233, June.
    13. Janiszewski, Chris, 1998. "The Influence of Display Characteristics on Visual Exploratory Search Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 290-301, December.
    14. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    15. Gustav Feichtinger & Richard F. Hartl & Suresh P. Sethi, 1994. "Dynamic Optimal Control Models in Advertising: Recent Developments," Management Science, INFORMS, vol. 40(2), pages 195-226, February.
    16. Rik Pieters & Michel Wedel & Jie Zhang, 2007. "Optimal Feature Advertising Design Under Competitive Clutter," Management Science, INFORMS, vol. 53(11), pages 1815-1828, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    2. Navdeep S. Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    3. Norris I. Bruce, 2008. "Pooling and Dynamic Forgetting Effects in Multitheme Advertising: Tracking the Advertising Sales Relationship with Particle Filters," Marketing Science, INFORMS, vol. 27(4), pages 659-673, 07-08.
    4. Huang, Jian & Leng, Mingming & Liang, Liping, 2012. "Recent developments in dynamic advertising research," European Journal of Operational Research, Elsevier, vol. 220(3), pages 591-609.
    5. Rik Pieters & Michel Wedel & Jie Zhang, 2007. "Optimal Feature Advertising Design Under Competitive Clutter," Management Science, INFORMS, vol. 53(11), pages 1815-1828, November.
    6. Beltran-Royo, C. & Zhang, H. & Blanco, L.A. & Almagro, J., 2013. "Multistage multiproduct advertising budgeting," European Journal of Operational Research, Elsevier, vol. 225(1), pages 179-188.
    7. Michel Wedel & Rik Pieters & Ralf Lans, 2023. "Modeling Eye Movements During Decision Making: A Review," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 697-729, June.
    8. Zuschke, Nick, 2020. "An analysis of process-tracing research on consumer decision-making," Journal of Business Research, Elsevier, vol. 111(C), pages 305-320.
    9. Zuschke, Nick, 2020. "The impact of task complexity and task motivation on in-store marketing effectiveness: An eye tracking analysis," Journal of Business Research, Elsevier, vol. 116(C), pages 337-350.
    10. Ashwin Aravindakshan & Prasad A. Naik, 2015. "Understanding the Memory Effects in Pulsing Advertising," Operations Research, INFORMS, vol. 63(1), pages 35-47, February.
    11. Luzon, Yossi & Pinchover, Rotem & Khmelnitsky, Eugene, 2022. "Dynamic budget allocation for social media advertising campaigns: optimization and learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 223-234.
    12. Mesak, Hani I. & Ellis, T. Selwyn, 2009. "On the superiority of pulsing under a concave advertising market potential function," European Journal of Operational Research, Elsevier, vol. 194(2), pages 608-627, April.
    13. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    14. Prasad A. Naik & Ashutosh Prasad & Suresh P. Sethi, 2008. "Building Brand Awareness in Dynamic Oligopoly Markets," Management Science, INFORMS, vol. 54(1), pages 129-138, January.
    15. Myers, Susan D. & Deitz, George D. & Huhmann, Bruce A. & Jha, Subhash & Tatara, Jennifer H., 2020. "An eye-tracking study of attention to brand-identifying content and recall of taboo advertising," Journal of Business Research, Elsevier, vol. 111(C), pages 176-186.
    16. Bellman, Steven & Murphy, Jamie & Treleaven-Hassard, Shiree & O'Farrell, James & Qiu, Lili & Varan, Duane, 2013. "Using Internet Behavior to Deliver Relevant Television Commercials," Journal of Interactive Marketing, Elsevier, vol. 27(2), pages 130-140.
    17. Ryan Dew & Nicolas Padilla & Anya Shchetkina, 2024. "Your MMM is Broken: Identification of Nonlinear and Time-varying Effects in Marketing Mix Models," Papers 2408.07678, arXiv.org.
    18. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    19. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    20. Anna E. Tuchman & Harikesh S. Nair & Pedro M. Gardete, 2018. "Television ad-skipping, consumption complementarities and the consumer demand for advertising," Quantitative Marketing and Economics (QME), Springer, vol. 16(2), pages 111-174, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:29:y:2010:i:5:p:783-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.