IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i3d10.1007_s13132-023-01485-5.html
   My bibliography  Save this article

Dynamic Connectedness Among Oil, Food Commodity, and Renewable Energy Markets: Novel Perspective from Quantile Dependence and Deep Learning

Author

Listed:
  • Yaoxun Deng

    (Anhui University of Finance and Economics)

  • Guobin Fang

    (Anhui University of Finance and Economics)

  • Jun Zhang

    (Anhui University of Finance and Economics)

  • Huimin Ma

    (Anhui University of Finance and Economics)

Abstract

The spillover effect between multiple markets is crucial in influencing the volatility of energy and food commodity prices. In this study, a time-varying QVAR model is used to analyze the impact of the outbreak of the Russo-Ukrainian war on the risk-associated system of oil, food, and renewable energy, and the DY spillover index model and wavelet coherence are introduced for result comparison. Specifically, data on oil, food commodities, and renewable energy from March 1, 2013, to January 31, 2023, are used, along with various influencing factors such as the climate change index, geopolitical risk, green bond index, and Dow Jones Industrial Average index, to analyze the dynamic correlations presented in the market from multiple perspectives. Furthermore, the ATT-CNN-LSTM model is utilized to construct a risk early warning system for oil-food-renewable energy, providing insights into the future trends of risks. Empirical results indicate that the correlation at the 0.05 and 0.95 quantiles is significantly greater than that at the conditional mean and median, indicating higher systemic risk spillover levels during extreme market conditions. We also find that the outbreak of the Russo-Ukrainian war has promoted the development of renewable energy and enhanced the correlation between food and renewable energy. The results of the extension analysis show that the predictive performance of the ATT-CNN-LSTM model is superior to the other five models. This research will contribute to more effective risk management of the energy-food system.

Suggested Citation

  • Yaoxun Deng & Guobin Fang & Jun Zhang & Huimin Ma, 2024. "Dynamic Connectedness Among Oil, Food Commodity, and Renewable Energy Markets: Novel Perspective from Quantile Dependence and Deep Learning," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 9935-9974, September.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01485-5
    DOI: 10.1007/s13132-023-01485-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01485-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01485-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song-Zan Chiou-Wei & Sheng-Hung Chen & Zhen Zhu, 2019. "Energy and Agricultural Commodity Markets Interaction: An Analysis of Crude Oil, Natural Gas, Corn, Soybean, and Ethanol Prices," The Energy Journal, , vol. 40(2), pages 265-296, March.
    2. Zhang, Dongyang & Mohsin, Muhammad & Rasheed, Abdul Khaliq & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2021. "Public spending and green economic growth in BRI region: Mediating role of green finance," Energy Policy, Elsevier, vol. 153(C).
    3. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    4. Boungou, Whelsy & Yatié, Alhonita, 2022. "The impact of the Ukraine–Russia war on world stock market returns," Economics Letters, Elsevier, vol. 215(C).
    5. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    6. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    7. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    8. Sergio Mariotti, 2022. "A warning from the Russian–Ukrainian war: avoiding a future that rhymes with the past," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(4), pages 761-782, December.
    9. Liu, Xiang-dong & Pan, Fei & Yuan, Lin & Chen, Yu-wang, 2019. "The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula," Energy, Elsevier, vol. 182(C), pages 999-1012.
    10. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    11. Kais Mtar & Walid Belazreg, 2021. "Causal Nexus Between Innovation, Financial Development, and Economic Growth: the Case of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(1), pages 310-341, March.
    12. Sun, Yanpeng & Mirza, Nawazish & Qadeer, Abdul & Hsueh, Hsin-Pei, 2021. "Connectedness between oil and agricultural commodity prices during tranquil and volatile period. Is crude oil a victim indeed?," Resources Policy, Elsevier, vol. 72(C).
    13. Boubaker, Sabri & Goodell, John W. & Pandey, Dharen Kumar & Kumari, Vineeta, 2022. "Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 48(C).
    14. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    15. Song-Zan Chiou-Wei, Sheng-Hung Chen, and Zhen Zhu, 2019. "Energy and Agricultural Commodity Markets Interaction: An Analysis of Crude Oil, Natural Gas, Corn, Soybean, and Ethanol Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    17. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    18. Teemu Makkonen & Timo Mitze, 2019. "Deconstructing the Education-Innovation-Development Nexus in the EU-28 Using Panel Causality and Poolability Tests," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 516-549, June.
    19. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    20. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    21. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    22. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    23. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    24. Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
    25. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    26. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    27. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    28. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    29. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    30. Lorente, Daniel Balsalobre & Mohammed, Kamel Si & Cifuentes-Faura, Javier & Shahzad, Umer, 2023. "Dynamic connectedness among climate change index, green financial assets and renewable energy markets: Novel evidence from sustainable development perspective," Renewable Energy, Elsevier, vol. 204(C), pages 94-105.
    31. Aloui Mouna & Jarboui Anis, 2017. "Stock Market, Interest Rate and Exchange Rate Risk Effects on non Financial Stock Returns During the Financial Crisis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(3), pages 898-915, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    2. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    3. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    4. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    5. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    6. Adeleke, Musefiu A. & Awodumi, Olabanji B. & Adewuyi, Adeolu O., 2022. "Return and volatility connectedness among commodity markets during major crises periods: Static and dynamic analyses with asymmetries," Resources Policy, Elsevier, vol. 79(C).
    7. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    8. Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," Resources Policy, Elsevier, vol. 72(C).
    9. Naeem, Muhammad Abubakr & Karim, Sitara & Hasan, Mudassar & Lucey, Brian M. & Kang, Sang Hoon, 2022. "Nexus between oil shocks and agriculture commodities: Evidence from time and frequency domain," Energy Economics, Elsevier, vol. 112(C).
    10. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    11. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    12. Khalfaoui, Rabeh & Shahzad, Umer & Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2023. "Investigating the spillovers between energy, food, and agricultural commodity markets: New insights from the quantile coherency approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 63-80.
    13. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    14. Noureddine Benlagha & Wafa Abdelmalek, 2024. "Dynamic connectedness between energy and agricultural commodities: insights from the COVID-19 pandemic and Russia–Ukraine conflict," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 781-825, September.
    15. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    16. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    17. repec:ags:ijag24:344838 is not listed on IDEAS
    18. Just, Margaret & Echaust, Krzysztof, 2023. "Price volatility transfer between agricultural and energy markets – the perspective of European markets during the COVID-19 pandemic and the Russian-Ukrainian war," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 199(2), August.
    19. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    20. Tongshuai Qiao & Liyan Han, 2023. "COVID‐19 and tail risk contagion across commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 242-272, February.
    21. Abricha, Amal & Ben Amar, Amine & Bellalah, Makram, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 229-246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01485-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.