Subspace Newton method for sparse group $$\ell _0$$ ℓ 0 optimization problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-024-01396-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
- Wanyou Cheng & Zixin Chen & Qingjie Hu, 2020. "An active set Barzilar–Borwein algorithm for $$l_{0}$$l0 regularized optimization," Journal of Global Optimization, Springer, vol. 76(4), pages 769-791, April.
- Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
- Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yang & Luo, Ziyan & Kong, Lingchen, 2021. "ℓ2,0-norm based selection and estimation for multivariate generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
- Yuezhang Che & Shuyan Chen & Xin Liu, 2022. "Sparse Index Tracking Portfolio with Sector Neutrality," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
- Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 0. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-29.
- Ben-Ameur, Walid & Neto, José, 2022. "New bounds for subset selection from conic relaxations," European Journal of Operational Research, Elsevier, vol. 298(2), pages 425-438.
- Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
- Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
- Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
- Zhi Zhao & Manuela Zucknick, 2020. "Structured penalized regression for drug sensitivity prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 525-545, June.
- Enrico Civitelli & Matteo Lapucci & Fabio Schoen & Alessio Sortino, 2021. "An effective procedure for feature subset selection in logistic regression based on information criteria," Computational Optimization and Applications, Springer, vol. 80(1), pages 1-32, September.
- Hafner, Christian & Wang, Linqi, 2020.
"Dynamic portfolio selection with sector-specific regularization,"
LIDAM Discussion Papers ISBA
2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, Christian M. & Wang, Linqi, 2022. "Dynamic portfolio selection with sector-specific regularization," LIDAM Reprints LFIN 2022007, Université catholique de Louvain, Louvain Finance (LFIN).
- Hafner, Christian M. & Wang, Linqi, 2022. "Dynamic portfolio selection with sector-specific regularization," LIDAM Reprints ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Yanhang Zhang & Junxian Zhu & Jin Zhu & Xueqin Wang, 2023. "A Splicing Approach to Best Subset of Groups Selection," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 104-119, January.
- Karsten Schweikert, 2022. "Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors," Papers 2201.05430, arXiv.org, revised Sep 2024.
- Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
- Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
- Wenxing Zhu & Huating Huang & Lanfan Jiang & Jianli Chen, 2022. "Weighted thresholding homotopy method for sparsity constrained optimization," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1924-1952, October.
- Xiaoyi Yang & Nynke M. D. Niezink & Rebecca Nugent, 2021. "Learning social networks from text data using covariate information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1399-1423, December.
- Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2021. "Sparse factor model based on trend filtering," Annals of Operations Research, Springer, vol. 306(1), pages 321-342, November.
- Wang, Yihe & Zhao, Sihai Dave, 2021. "A nonparametric empirical Bayes approach to large-scale multivariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
More about this item
Keywords
Sparse group $$ell _0$$ ℓ 0 optimization; Subspace Newton method; Global convergence; Second-order convergence rate;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:1:d:10.1007_s10898-024-01396-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.