IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i3d10.1007_s10898-024-01369-1.html
   My bibliography  Save this article

Consensus-based optimization for multi-objective problems: a multi-swarm approach

Author

Listed:
  • Kathrin Klamroth

    (University of Wuppertal)

  • Michael Stiglmayr

    (University of Wuppertal)

  • Claudia Totzeck

    (University of Wuppertal)

Abstract

We propose a multi-swarm approach to approximate the Pareto front of general multi-objective optimization problems that is based on the consensus-based optimization method (CBO). The algorithm is motivated step by step beginning with a simple extension of CBO based on fixed scalarization weights. To overcome the issue of choosing the weights we propose an adaptive weight strategy in the second modeling step. The modeling process is concluded with the incorporation of a penalty strategy that avoids clusters along the Pareto front and a diffusion term that prevents collapsing swarms. Altogether the proposed K-swarm CBO algorithm is tailored for a diverse approximation of the Pareto front and, simultaneously, the efficient set of general non-convex multi-objective problems. The feasibility of the approach is justified by analytic results, including convergence proofs, and a performance comparison to the well-known non-dominated sorting genetic algorithms NSGA2 and NSGA3 as well as the recently proposed one-swarm approach for multi-objective problems involving consensus-based optimization.

Suggested Citation

  • Kathrin Klamroth & Michael Stiglmayr & Claudia Totzeck, 2024. "Consensus-based optimization for multi-objective problems: a multi-swarm approach," Journal of Global Optimization, Springer, vol. 89(3), pages 745-776, July.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:3:d:10.1007_s10898-024-01369-1
    DOI: 10.1007/s10898-024-01369-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01369-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01369-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    2. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    3. Yaron, D. & Cooper, A. & Golan, D. & Reisman, A., 1982. "Rural Industrialization - Analysis of Characteristics and an Approach to the Selection of Industrial Plants for Kibbutz Settlements in Israel," Working Papers 232600, Hebrew University of Jerusalem, Center for Agricultural Economic Research.
    4. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    5. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    6. Duan Li & Yacov Y. Haimes, 1988. "The uncertainty sensitivity index method (USIM) and its extension," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 655-672, December.
    7. Britta Schulze & Kathrin Klamroth & Michael Stiglmayr, 2019. "Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions," Journal of Global Optimization, Springer, vol. 74(3), pages 495-522, July.
    8. Vieira, D.A.G. & Lisboa, A.C., 2019. "A cutting-plane method to nonsmooth multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 822-829.
    9. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    10. Shafiqur Rehman & Salman A. Khan & Luai M. Alhems, 2020. "A Rule-Based Fuzzy Logic Methodology for Multi-Criteria Selection of Wind Turbines," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    11. Perić Tunjo, 2016. "Vendor Selection and Supply Quotas Determination by Using a New Multi-Objective Programming Method Based on Cooperative Game Theory," Business Systems Research, Sciendo, vol. 7(1), pages 104-118.
    12. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram, 2020. "On q -Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    13. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    14. Xin Feng & Shaohua Wang & Alan T Murray & Yuanpei Cao & Song Gao, 2021. "Multi-objective trajectory optimization in planning for sequential activities across space and through time," Environment and Planning B, , vol. 48(4), pages 945-963, May.
    15. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    16. José Niño-Mora, 2007. "Dynamic priority allocation via restless bandit marginal productivity indices," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 161-198, December.
    17. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    18. Labiba Noshin Asha & Arup Dey & Nita Yodo & Lucy G. Aragon, 2022. "Optimization Approaches for Multiple Conflicting Objectives in Sustainable Green Supply Chain Management," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    19. Alejandro Alvarado-Iniesta & Luis Gonzalo Guillen-Anaya & Luis Alberto Rodríguez-Picón & Raul Ñeco-Caberta, 2020. "Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 19-32, January.
    20. Weihua Su & Dongcai Zhang & Chonghui Zhang & Dalia Streimikiene, 2020. "Sustainability assessment of energy sector development in China and European Union," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1063-1076, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:3:d:10.1007_s10898-024-01369-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.