IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v85y2023i3d10.1007_s10898-022-01225-0.html
   My bibliography  Save this article

Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications

Author

Listed:
  • Mengmeng Song

    (Beihang University)

  • Yong Xia

    (Beihang University)

Abstract

We extend the Calabi-Polyak theorem on the convexity of joint numerical range from three to any number of matrices on condition that each of them is a linear combination of three matrices having a positive definite linear combination. Our new result covers the fundamental Dines’s theorem. As applications, the further extended Yuan’s lemma and S-lemma are presented. The former is used to establish a more generalized assumption under which the standard second-order necessary optimality condition holds at the local minimizer in nonlinear programming, and the latter reveals hidden convexity of the homogeneous quadratic optimization problem with two bilateral quadratic constraints and its fractional extension.

Suggested Citation

  • Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.
  • Handle: RePEc:spr:jglopt:v:85:y:2023:i:3:d:10.1007_s10898-022-01225-0
    DOI: 10.1007/s10898-022-01225-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01225-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01225-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ting Pong & Henry Wolkowicz, 2014. "The generalized trust region subproblem," Computational Optimization and Applications, Springer, vol. 58(2), pages 273-322, June.
    2. B. T. Polyak, 1998. "Convexity of Quadratic Transformations and Its Use in Control and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 553-583, December.
    3. A. Baccari, 2004. "On the Classical Necessary Second-Order Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 213-221, October.
    4. Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Haeser, 2017. "An Extension of Yuan’s Lemma and Its Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 641-649, September.
    2. Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.
    3. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    4. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    5. C. Durieu & É. Walter & B. Polyak, 2001. "Multi-Input Multi-Output Ellipsoidal State Bounding," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 273-303, November.
    6. María C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2011. "On Second-Order Optimality Conditions for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 332-351, May.
    7. Giorgio Giorgi, 2019. "Notes on Constraint Qualifications for Second-Order Optimality Conditions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(5), pages 16-32, October.
    8. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    9. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    10. Zhuoyi Xu & Linbin Li & Yong Xia, 2023. "A partial ellipsoidal approximation scheme for nonconvex homogeneous quadratic optimization with quadratic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 93-109, August.
    11. J. B. Lasserre & J. B. Hiriart-Urruty, 2002. "Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 31-52, January.
    12. A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
    13. A. Baccari & B. Samet, 2009. "An Extension of Polyak’s Theorem in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 409-418, March.
    14. Stefan Sremac & Fei Wang & Henry Wolkowicz & Lucas Pettersson, 2019. "Noisy Euclidean distance matrix completion with a single missing node," Journal of Global Optimization, Springer, vol. 75(4), pages 973-1002, December.
    15. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
    16. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    17. B. S. Mordukhovich & M. E. Sarabi, 2017. "Stability Analysis for Composite Optimization Problems and Parametric Variational Systems," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 554-577, February.
    18. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
    19. Huu-Quang Nguyen & Ruey-Lin Sheu, 2019. "Geometric properties for level sets of quadratic functions," Journal of Global Optimization, Springer, vol. 73(2), pages 349-369, February.
    20. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:85:y:2023:i:3:d:10.1007_s10898-022-01225-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.