IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v152y2012i3d10.1007_s10957-011-9930-3.html
   My bibliography  Save this article

Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition

Author

Listed:
  • Guoyin Li

    (University of New South Wales)

Abstract

In this paper, we establish global optimality conditions for quadratic optimization problems with quadratic equality and bivalent constraints. We first present a necessary and sufficient condition for a global minimizer of quadratic optimization problems with quadratic equality and bivalent constraints. Then we examine situations where this optimality condition is equivalent to checking the positive semidefiniteness of a related matrix, and so, can be verified in polynomial time by using elementary eigenvalues decomposition techniques. As a consequence, we also present simple sufficient global optimality conditions, which can be verified by solving a linear matrix inequality problem, extending several known sufficient optimality conditions in the existing literature.

Suggested Citation

  • Guoyin Li, 2012. "Global Quadratic Minimization over Bivalent Constraints: Necessary and Sufficient Global Optimality Condition," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 710-726, March.
  • Handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9930-3
    DOI: 10.1007/s10957-011-9930-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9930-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9930-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaithilingam Jeyakumar & Zhiyou Wu, 2007. "Conditions For Global Optimality Of Quadratic Minimization Problems With Lmi Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 149-160.
    2. M. Ç. Pinar, 2004. "Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 433-440, August.
    3. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    4. B. T. Polyak, 1998. "Convexity of Quadratic Transformations and Its Use in Control and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 553-583, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    2. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    3. V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
    4. Shenglong Hu & Guoyin Li & Liqun Qi & Yisheng Song, 2013. "Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 717-738, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    2. Thai Doan Chuong, 2020. "Semidefinite Program Duals for Separable Polynomial Programs Involving Box Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 289-299, April.
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On zero duality gap in nonconvex quadratic programming problems," Journal of Global Optimization, Springer, vol. 52(2), pages 229-242, February.
    5. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    6. V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
    7. Wu, Zhiyou & Tian, Jing & Quan, Jing & Ugon, Julien, 2014. "Optimality conditions and optimization methods for quartic polynomial optimization," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 968-982.
    8. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.
    9. V. Jeyakumar & G. Li, 2013. "Robust solutions of quadratic optimization over single quadratic constraint under interval uncertainty," Journal of Global Optimization, Springer, vol. 55(2), pages 209-226, February.
    10. Wu, Zhiyou & Tian, Jing & Ugon, Julien & Zhang, Liang, 2015. "Global optimality conditions and optimization methods for constrained polynomial programming problems," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 312-325.
    11. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    12. C. Durieu & É. Walter & B. Polyak, 2001. "Multi-Input Multi-Output Ellipsoidal State Bounding," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 273-303, November.
    13. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    14. Zhuoyi Xu & Linbin Li & Yong Xia, 2023. "A partial ellipsoidal approximation scheme for nonconvex homogeneous quadratic optimization with quadratic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 93-109, August.
    15. J. B. Lasserre & J. B. Hiriart-Urruty, 2002. "Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 31-52, January.
    16. A. Baccari & B. Samet, 2009. "An Extension of Polyak’s Theorem in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 409-418, March.
    17. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
    18. B. S. Mordukhovich & M. E. Sarabi, 2017. "Stability Analysis for Composite Optimization Problems and Parametric Variational Systems," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 554-577, February.
    19. Harish Palanthandalam-Madapusi & Tobin Van Pelt & Dennis Bernstein, 2009. "Matrix pencils and existence conditions for quadratic programming with a sign-indefinite quadratic equality constraint," Computational Optimization and Applications, Springer, vol. 45(4), pages 533-549, December.
    20. Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:152:y:2012:i:3:d:10.1007_s10957-011-9930-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.