IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v123y2004i1d10.1023_bjota.0000043998.04008.e6.html
   My bibliography  Save this article

On the Classical Necessary Second-Order Optimality Conditions

Author

Listed:
  • A. Baccari

    (Ecole Supérieure des Sciences et Techniques de Tunis)

Abstract

In this paper, the property of a necessary second-order optimality condition to hold with the same Lagrange multiplier for all critical vectors is investigated. It is limited to nonconvex optimization Problems in ℝn with equality and inequality constraints; the Mangasarian-Fromovitz constraint qualification is assumed to be hold. A counterexample was given recently by Anitescu. We give some sufficient conditions and we prove that this property holds if n ≤ 2 or if the number of active inequality constraints is at most two. For three active inequality constraints and n =3, a counterexample is given.

Suggested Citation

  • A. Baccari, 2004. "On the Classical Necessary Second-Order Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 213-221, October.
  • Handle: RePEc:spr:joptap:v:123:y:2004:i:1:d:10.1023_b:jota.0000043998.04008.e6
    DOI: 10.1023/B:JOTA.0000043998.04008.e6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000043998.04008.e6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000043998.04008.e6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Haeser, 2017. "An Extension of Yuan’s Lemma and Its Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 641-649, September.
    2. María C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2011. "On Second-Order Optimality Conditions for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 332-351, May.
    3. A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
    4. Giorgio Giorgi, 2019. "Notes on Constraint Qualifications for Second-Order Optimality Conditions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(5), pages 16-32, October.
    5. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    6. Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.
    7. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    8. R. Andreani & C. E. Echagüe & M. L. Schuverdt, 2010. "Constant-Rank Condition and Second-Order Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 255-266, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:123:y:2004:i:1:d:10.1023_b:jota.0000043998.04008.e6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.