IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i1d10.1007_s10898-019-00835-5.html
   My bibliography  Save this article

Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere

Author

Listed:
  • Van-Bong Nguyen

    (Tay Nguyen University)

  • Thi Ngan Nguyen

    (Tay Nguyen University)

  • Ruey-Lin Sheu

    (National Cheng Kung University)

Abstract

In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set of conditions, called “Property J”, on an SDP relaxation of (P) and its conical dual. We show that (P) has the strong duality if and only if there exists at least one optimal solution to the SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and Zhang. Many nontrivial examples are constructed to help understand the mechanism.

Suggested Citation

  • Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00835-5
    DOI: 10.1007/s10898-019-00835-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00835-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00835-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. V. Solodov, 2004. "On the Sequential Quadratically Constrained Quadratic Programming Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 64-79, February.
    2. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    3. Ting Pong & Henry Wolkowicz, 2014. "The generalized trust region subproblem," Computational Optimization and Applications, Springer, vol. 58(2), pages 273-322, June.
    4. B. T. Polyak, 1998. "Convexity of Quadratic Transformations and Its Use in Control and Optimization," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 553-583, December.
    5. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    6. S. Fallahi & M. Salahi, 2014. "On the Indefinite Quadratic Fractional Optimization with Two Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 249-256, July.
    7. O. P. Ferreira & S. Z. Németh, 2019. "On the spherical convexity of quadratic functions," Journal of Global Optimization, Springer, vol. 73(3), pages 537-545, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    2. Sheng-Long Hu & Zheng-Hai Huang, 2012. "Theorems of the Alternative for Inequality Systems of Real Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 1-16, July.
    3. Wenbao Ai & Yongwei Huang & Shuzhong Zhang, 2008. "On the Low Rank Solutions for Linear Matrix Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 965-975, November.
    4. Meijia Yang & Shu Wang & Yong Xia, 2022. "Toward Nonquadratic S-Lemma: New Theory and Application in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 353-363, July.
    5. H. Tuy & H. Tuan, 2013. "Generalized S-Lemma and strong duality in nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1045-1072, July.
    6. Mengmeng Song & Yong Xia, 2023. "Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications," Journal of Global Optimization, Springer, vol. 85(3), pages 743-756, March.
    7. Yongwei Huang & Shuzhong Zhang, 2007. "Complex Matrix Decomposition and Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 758-768, August.
    8. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    9. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    10. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    11. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    12. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    13. J. B. Lasserre & J. B. Hiriart-Urruty, 2002. "Mathematical Properties of Optimization Problems Defined by Positively Homogeneous Functions," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 31-52, January.
    14. Alfred Auslender, 2013. "An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 183-212, February.
    15. Xinzhen Zhang & Chen Ling & Liqun Qi, 2011. "Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints," Journal of Global Optimization, Springer, vol. 49(2), pages 293-311, February.
    16. A. Baccari & B. Samet, 2009. "An Extension of Polyak’s Theorem in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 409-418, March.
    17. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    18. Stefan Sremac & Fei Wang & Henry Wolkowicz & Lucas Pettersson, 2019. "Noisy Euclidean distance matrix completion with a single missing node," Journal of Global Optimization, Springer, vol. 75(4), pages 973-1002, December.
    19. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    20. Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00835-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.