IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i1p30-42.html
   My bibliography  Save this article

Models for the piecewise linear unsplittable multicommodity flow problems

Author

Listed:
  • Fortz, Bernard
  • Gouveia, Luís
  • Joyce-Moniz, Martim

Abstract

In this paper, we consider multicommodity flow problems, with unsplittable flows and piecewise linear routing costs. We first focus on the case where the piecewise linear routing costs are convex. We show that this problem is NP-hard for the general case, but polynomially solvable when there is only one commodity. We then propose a strengthened mixed-integer programming formulation for the problem. We show that the linear relaxation of this formulation always gives the optimal solution of the problem for the single commodity case. We present a wide array of computational experiments, showing this formulation also produces very tight linear programming bounds for the multi-commodity case. Finally, we also adapt our formulation for the non-convex case. Our experimental results imply that the linear programming bounds for this case, are only slightly weaker than the ones of state-of-the-art models for the splittable flow version of the problem.

Suggested Citation

  • Fortz, Bernard & Gouveia, Luís & Joyce-Moniz, Martim, 2017. "Models for the piecewise linear unsplittable multicommodity flow problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 30-42.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:1:p:30-42
    DOI: 10.1016/j.ejor.2017.01.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717300863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.01.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Sibel Salman & R. Ravi & John N. Hooker, 2008. "Solving the Capacitated Local Access Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 243-254, May.
    2. Kyungchul Park & Seokhoon Kang & Sungsoo Park, 1996. "An Integer Programming Approach to the Bandwidth Packing Problem," Management Science, INFORMS, vol. 42(9), pages 1277-1291, September.
    3. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2007. "Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs," Operations Research, INFORMS, vol. 55(1), pages 146-157, February.
    4. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    5. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    6. Bernard Gendron & Luis Gouveia, 2017. "Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 51(2), pages 629-649, May.
    7. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Blokland & R. D. van der Mei & J. F. J. Pruyn & J. Berkhout, 2023. "Literature Survey on Automatic Pipe Routing," SN Operations Research Forum, Springer, vol. 4(2), pages 1-56, June.
    2. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    3. Hong Sun & Yan Li, 2023. "Optimal Acquisition and Production Policies for Remanufacturing with Quality Grading," Mathematics, MDPI, vol. 11(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Qian & Lim, Andrew & Zhu, Wenbin, 2015. "The two-dimensional vector packing problem with piecewise linear cost function," Omega, Elsevier, vol. 50(C), pages 43-53.
    2. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    3. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    4. Ashwin Arulselvan & Mohsen Rezapour, 2017. "Exact Approaches for Designing Multifacility Buy-at-Bulk Networks," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 597-611, November.
    5. Kang, Jangha & Park, Kyungchul & Park, Sungsoo, 2009. "Optimal multicast route packing," European Journal of Operational Research, Elsevier, vol. 196(1), pages 351-359, July.
    6. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    7. Hua, Hao & Hovestadt, Ludger & Tang, Peng & Li, Biao, 2019. "Integer programming for urban design," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1125-1137.
    8. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    9. Naoto Katayama, 2017. "A Combined Matheuristic for the Piecewise Linear Multicommodity Network Flow Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-24, December.
    10. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    11. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    12. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    13. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).
    14. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    15. Seohee Kim & Chungmok Lee, 2021. "A branch and price approach for the robust bandwidth packing problem with queuing delays," Annals of Operations Research, Springer, vol. 307(1), pages 251-275, December.
    16. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    17. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    18. Jinil Han & Kyungsik Lee & Chungmok Lee & Sungsoo Park, 2013. "Exact Algorithms for a Bandwidth Packing Problem with Queueing Delay Guarantees," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 585-596, August.
    19. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    20. Cohn, Amy & Davey, Melinda & Schkade, Lisa & Siegel, Amanda & Wong, Caris, 2008. "Network design and flow problems with cross-arc costs," European Journal of Operational Research, Elsevier, vol. 189(3), pages 890-901, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:1:p:30-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.