IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i2p412-427.html
   My bibliography  Save this article

Analysis of MILP Techniques for the Pooling Problem

Author

Listed:
  • Santanu S. Dey

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332)

  • Akshay Gupte

    (Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, 29634)

Abstract

The pq -relaxation for the pooling problem can be constructed by applying McCormick envelopes for each of the bilinear terms appearing in the so-called pq -formulation of the pooling problem. This relaxation can be strengthened by using piecewise-linear functions that over- and under-estimate each bilinear term. Although there is a significant amount of empirical evidence to show that such piecewise-linear relaxations, which can be written as mixed-integer linear programs (MILPs), yield good bounds for the pooling problem, to the best of our knowledge, no formal result regarding the quality of these relaxations is known. In this paper, we prove that the ratio of the upper bound obtained by solving piecewise-linear relaxations (objective function is maximization) to the optimal objective function value of the pooling problem is at most n , where n is the number of output nodes. Furthermore for any ϵ > 0 and for any piecewise-linear relaxation, there exists an instance where the ratio of the relaxation value to the optimal value is at least n − ϵ . This analysis naturally yields a polynomial-time n -approximation algorithm for the pooling problem. We also show that if there exists a polynomial-time approximation algorithm for the pooling problem with guarantee better than n 1− ϵ for any ϵ > 0, then NP-complete problems have randomized polynomial-time algorithms. Finally, motivated by the approximation algorithm, we design a heuristic that involves solving an MILP-based restriction of the pooling problem. This heuristic is guaranteed to provide solutions within a factor of n . On large-scale test instances and in significantly lesser time, this heuristic provides solutions that are often orders of magnitude better than those given by commercial local and global optimization solvers.

Suggested Citation

  • Santanu S. Dey & Akshay Gupte, 2015. "Analysis of MILP Techniques for the Pooling Problem," Operations Research, INFORMS, vol. 63(2), pages 412-427, April.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:2:p:412-427
    DOI: 10.1287/opre.2015.1357
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1357
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Audet & Jack Brimberg & Pierre Hansen & Sébastien Le Digabel & Nenad Mladenovi'{c}, 2004. "Pooling Problem: Alternate Formulations and Solution Methods," Management Science, INFORMS, vol. 50(6), pages 761-776, June.
    2. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    3. Thomas E. Baker & Leon S. Lasdon, 1985. "Successive Linear Programming at Exxon," Management Science, INFORMS, vol. 31(3), pages 264-274, March.
    4. Mohammed Alfaki & Dag Haugland, 2014. "A cost minimization heuristic for the pooling problem," Annals of Operations Research, Springer, vol. 222(1), pages 73-87, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Beach & Robert Hildebrand & Joey Huchette, 2022. "Compact mixed-integer programming formulations in quadratic optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 869-912, December.
    2. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    3. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    4. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    5. Marandi, Ahmadreza & Dahl, Joachim & de Klerk, Etienne, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Other publications TiSEM 981f1428-4d42-4d3f-9a7a-7, Tilburg University, School of Economics and Management.
    6. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    7. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    8. Fischetti, Matteo & Monaci, Michele, 2020. "A branch-and-cut algorithm for Mixed-Integer Bilinear Programming," European Journal of Operational Research, Elsevier, vol. 282(2), pages 506-514.
    9. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    10. Santanu S. Dey & Burak Kocuk & Asteroide Santana, 2020. "Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem," Journal of Global Optimization, Springer, vol. 77(2), pages 227-272, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    2. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    3. Mohammed Alfaki & Dag Haugland, 2014. "A cost minimization heuristic for the pooling problem," Annals of Operations Research, Springer, vol. 222(1), pages 73-87, November.
    4. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    5. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    6. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    7. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.
    8. Lars Hellemo & Asgeir Tomasgard, 2016. "A generalized global optimization formulation of the pooling problem with processing facilities and composite quality constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 409-444, July.
    9. Akshay Gupte & Shabbir Ahmed & Santanu S. Dey & Myun Seok Cheon, 2017. "Relaxations and discretizations for the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 631-669, March.
    10. Ríos-Mercado, Roger Z. & Borraz-Sánchez, Conrado, 2015. "Optimization problems in natural gas transportation systems: A state-of-the-art review," Applied Energy, Elsevier, vol. 147(C), pages 536-555.
    11. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2017. "A polynomially solvable case of the pooling problem," Journal of Global Optimization, Springer, vol. 67(3), pages 621-630, March.
    12. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.
    13. Cheng, Xianliang & Feng, Suzhen & Zheng, Hao & Wang, Jinwen & Liu, Shuangquan, 2022. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Elsevier, vol. 251(C).
    14. Ted Kutz & Mark Davis & Robert Creek & Nick Kenaston & Craig Stenstrom & Margery Connor, 2014. "Optimizing Chevron’s Refineries," Interfaces, INFORMS, vol. 44(1), pages 39-54, February.
    15. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    16. Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
    17. Leo Liberti, 2015. "Optimization and sustainable development," Computational Management Science, Springer, vol. 12(3), pages 371-395, July.
    18. Draman, Murat & Kuban Altinel, I & Bajgoric, Nijaz & Tamer Unal, Ali & Birgoren, Burak, 2002. "A clone-based graphical modeler and mathematical model generator for optimal production planning in process industries," European Journal of Operational Research, Elsevier, vol. 137(3), pages 483-496, March.
    19. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    20. Falk M. Hante & Martin Schmidt, 2019. "Complementarity-based nonlinear programming techniques for optimal mixing in gas networks," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 299-323, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:2:p:412-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.