IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i4d10.1007_s10898-020-00981-1.html
   My bibliography  Save this article

On global subdifferentials with applications in nonsmooth optimization

Author

Listed:
  • Felipe Lara

    (Universidad de Tarapacá)

  • Alireza Kabgani

    (Urmia University of Technology
    Institute for Research in Fundamental Sciences (IPM))

Abstract

The notions of global subdifferentials associated with the global directional derivatives are introduced in the following paper. Most common used properties, a set of calculus rules along with a mean value theorem are presented as well. In addition, a diversity of comparisons with well-known subdifferentials such as Fréchet, Dini, Clarke, Michel–Penot, and Mordukhovich subdifferential and convexificator notion are provided. Furthermore, the lower global subdifferential is in fact proved to be an abstract subdifferential. Therefore, the lower global subdifferential satisfies standard properties for subdifferential operators. Finally, two applications in nonconvex nonsmooth optimization are given: necessary and sufficient optimality conditions for a point to be local minima with and without constraints, and a revisited characterization for nonsmooth quasiconvex functions.

Suggested Citation

  • Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:4:d:10.1007_s10898-020-00981-1
    DOI: 10.1007/s10898-020-00981-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00981-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00981-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dinh The Luc & Michel Théra, 1994. "Derivatives with Support and Applications," Mathematics of Operations Research, INFORMS, vol. 19(3), pages 659-675, August.
    2. V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
    3. D. Aussel, 1998. "Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 29-45, April.
    4. J. Cruz Neto & G. Silva & O. Ferreira & J. Lopes, 2013. "A subgradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 461-472, April.
    5. Alberto Cambini & Laura Martein, 2009. "Generalized Convexity and Optimization," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-70876-6, October.
    6. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    7. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    8. Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
    9. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    2. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    2. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    3. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    4. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    5. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    6. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    7. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    8. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    9. Nicolas Hadjisavvas & Felipe Lara & Dinh The Luc, 2020. "A general asymptotic function with applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 78(1), pages 49-68, September.
    10. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    11. Vsevolod I. Ivanov, 2020. "Characterization of Radially Lower Semicontinuous Pseudoconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 368-383, February.
    12. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    13. Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
    14. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    15. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    16. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    17. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    18. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    19. Vsevolod Ivanov, 2013. "Characterizations of pseudoconvex functions and semistrictly quasiconvex ones," Journal of Global Optimization, Springer, vol. 57(3), pages 677-693, November.
    20. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:4:d:10.1007_s10898-020-00981-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.