IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v86y2023i4d10.1007_s10898-023-01278-9.html
   My bibliography  Save this article

Semistrictly and neatly quasiconvex programming using lower global subdifferentials

Author

Listed:
  • A. Kabgani

    (University of Antwerp)

  • F. Lara

    (University of Tarapacá)

Abstract

The main goal of this paper is to investigate the properties and connections of neatly and semistrictly quasiconvex functions, especially when they appear in constrained and unconstrained optimization problems. The lower global subdifferential, recently introduced in the literature, plays an essential role in this study. We present several optimality conditions for constrained and unconstrained nonsmooth neatly/semistrictly quasiconvex optimization problems in terms of lower global subdifferentials. To this end, for a constrained optimization problem, we present some characterizations for the normal and tangent cones and the cone of feasible directions of the feasible set. Some relationships between the Greenberg–Pierskalla, tangentially and lower global subdifferentials of neatly and semistrictly quasiconvex functions are also given. The mentioned relationships show that the outcomes of this paper generalize some results existing in the literature.

Suggested Citation

  • A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
  • Handle: RePEc:spr:jglopt:v:86:y:2023:i:4:d:10.1007_s10898-023-01278-9
    DOI: 10.1007/s10898-023-01278-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01278-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01278-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    2. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
    3. V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
    4. Suliman Al-Homidan & Nicolas Hadjisavvas & Loai Shaalan, 2018. "Transformation of Quasiconvex Functions to Eliminate Local Minima," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 93-105, April.
    5. Alberto Cambini & Laura Martein, 2009. "Generalized Convexity and Optimization," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-70876-6, July.
    6. Hishinuma, Kazuhiro & Iiduka, Hideaki, 2020. "Fixed point quasiconvex subgradient method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 428-437.
    7. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    8. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    9. Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
    10. J.P. Penot, 2003. "Characterization of Solution Sets of Quasiconvex Programs," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 627-636, June.
    11. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    12. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    2. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    3. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    4. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    5. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    6. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    7. Chinedu Izuchukwu & Yekini Shehu & Chibueze C. Okeke, 2023. "Extension of forward-reflected-backward method to non-convex mixed variational inequalities," Journal of Global Optimization, Springer, vol. 86(1), pages 123-140, May.
    8. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    9. Felipe Lara, 2020. "Optimality Conditions for Nonconvex Nonsmooth Optimization via Global Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 134-150, April.
    10. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    11. X. F. Li & J. Z. Zhang, 2010. "Existence and Boundedness of the Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 373-386, May.
    12. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.
    13. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    14. Satoshi Suzuki, 2019. "Optimality Conditions and Constraint Qualifications for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 963-976, December.
    15. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    16. Boualem Alleche & Vicenţiu D. Rădulescu, 2017. "Further on Set-Valued Equilibrium Problems and Applications to Browder Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 39-58, October.
    17. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    18. R. Cambini & R. Riccardi & D. Scopelliti, 2023. "Solving linear multiplicative programs via branch-and-bound: a computational experience," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    19. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    20. Delle Site, Paolo & Kilani, Karim & Gatta, Valerio & Marcucci, Edoardo & de Palma, André, 2019. "Estimation of consistent Logit and Probit models using best, worst and best–worst choices," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 87-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:4:d:10.1007_s10898-023-01278-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.