IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v54y2013i3p461-472.html
   My bibliography  Save this article

A subgradient method for multiobjective optimization

Author

Listed:
  • J. Cruz Neto
  • G. Silva
  • O. Ferreira
  • J. Lopes

Abstract

A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • J. Cruz Neto & G. Silva & O. Ferreira & J. Lopes, 2013. "A subgradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 461-472, April.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:461-472
    DOI: 10.1007/s10589-012-9494-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9494-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9494-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfredo N. Iusem & B. F. Svaiter & Marc Teboulle, 1994. "Entropy-Like Proximal Methods in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 790-814, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    2. Fabrice Poirion & Quentin Mercier & Jean-Antoine Désidéri, 2017. "Descent algorithm for nonsmooth stochastic multiobjective optimization," Computational Optimization and Applications, Springer, vol. 68(2), pages 317-331, November.
    3. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    4. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    5. Mike G. Tsionas, 2021. "Multi-criteria optimization in regression," Annals of Operations Research, Springer, vol. 306(1), pages 7-25, November.
    6. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    7. Qu, Shaojian & Liu, Chen & Goh, Mark & Li, Yijun & Ji, Ying, 2014. "Nonsmooth multiobjective programming with quasi-Newton methods," European Journal of Operational Research, Elsevier, vol. 235(3), pages 503-510.
    8. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    9. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    10. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    11. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    12. Felipe Lara & Alireza Kabgani, 2021. "On global subdifferentials with applications in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 81(4), pages 881-900, December.
    13. Tsionas, Mike G., 2018. "A Bayesian approach to find Pareto optima in multiobjective programming problems using Sequential Monte Carlo algorithms," Omega, Elsevier, vol. 77(C), pages 73-79.
    14. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    15. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    16. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    17. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    18. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2021. "A Projected Forward-Backward Algorithm for Constrained Minimization with Applications to Image Inpainting," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    2. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    3. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    4. R. Jiménez & J. E. Yukich, 2002. "Asymptotics for Statistical Distances Based on Voronoi Tessellations," Journal of Theoretical Probability, Springer, vol. 15(2), pages 503-541, April.
    5. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    6. J. Y. Bello Cruz & R. Díaz Millán, 2014. "A Direct Splitting Method for Nonsmooth Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 728-737, June.
    7. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    8. Pinheiro, Ricardo B.N.M. & Lage, Guilherme G. & da Costa, Geraldo R.M., 2019. "A primal-dual integrated nonlinear rescaling approach applied to the optimal reactive dispatch problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1137-1153.
    9. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    10. Arnaldo S. Brito & J. X. Cruz Neto & Jurandir O. Lopes & P. Roberto Oliveira, 2012. "Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 217-234, July.
    11. A. N. Iusem, 1998. "On Some Properties of Generalized Proximal Point Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 337-362, February.
    12. H. Attouch & M. Teboulle, 2004. "Regularized Lotka-Volterra Dynamical System as Continuous Proximal-Like Method in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 541-570, June.
    13. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    14. J. Y. Bello Cruz & R. Díaz Millán, 2016. "A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces," Journal of Global Optimization, Springer, vol. 65(3), pages 597-614, July.
    15. Abdellatif Moudafi, 2024. "About the Subgradient Method for Equilibrium Problems," Mathematics, MDPI, vol. 12(13), pages 1-6, July.
    16. K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.
    17. G. Bento & J. Cruz Neto & J. Lopes & A. Soares Jr & Antoine Soubeyran, 2016. "Generalized Proximal Distances for Bilevel Equilibrium Problems," Post-Print hal-01690192, HAL.
    18. Éva Komáromi, 2012. "Entropy programming modeling of IBNR claims reserves," Annals of Operations Research, Springer, vol. 200(1), pages 93-108, November.
    19. Benar F. Svaiter, 2014. "A Class of Fejér Convergent Algorithms, Approximate Resolvents and the Hybrid Proximal-Extragradient Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 133-153, July.
    20. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:461-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.