Inexact Successive quadratic approximation for regularized optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-019-00059-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2014. "Variable Metric Forward–Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 107-132, July.
- Ion Necoara & Yurii Nesterov & François Glineur, 2019. "Linear convergence of first order methods for non-strongly convex optimization," LIDAM Reprints CORE 3000, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- Hiva Ghanbari & Katya Scheinberg, 2018. "Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates," Computational Optimization and Applications, Springer, vol. 69(3), pages 597-627, April.
- Jinchao Li & Martin S. Andersen & Lieven Vandenberghe, 2017. "Inexact proximal Newton methods for self-concordant functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 19-41, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bonettini, S. & Prato, M. & Rebegoldi, S., 2021. "New convergence results for the inexact variable metric forward–backward method," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
- Bastian Pötzl & Anton Schiela & Patrick Jaap, 2022. "Second order semi-smooth Proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 82(2), pages 465-498, June.
- Wei Peng & Hui Zhang & Xiaoya Zhang & Lizhi Cheng, 2020. "Global complexity analysis of inexact successive quadratic approximation methods for regularized optimization under mild assumptions," Journal of Global Optimization, Springer, vol. 78(1), pages 69-89, September.
- Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
- Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
- Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
- Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
- Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
- S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018.
"Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization,"
Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact worst-case convergence rates of the proximal gradient method for composite convex minimization," LIDAM Reprints CORE 2975, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
- Huynh Ngai & Ta Anh Son, 2022. "Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order o(1/k2)," Computational Optimization and Applications, Springer, vol. 83(2), pages 615-649, November.
- Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
- Olivier Fercoq & Zheng Qu, 2020. "Restarting the accelerated coordinate descent method with a rough strong convexity estimate," Computational Optimization and Applications, Springer, vol. 75(1), pages 63-91, January.
- Wei Peng & Hui Zhang & Xiaoya Zhang & Lizhi Cheng, 2020. "Global complexity analysis of inexact successive quadratic approximation methods for regularized optimization under mild assumptions," Journal of Global Optimization, Springer, vol. 78(1), pages 69-89, September.
- J. C. De Los Reyes & E. Loayza & P. Merino, 2017. "Second-order orthant-based methods with enriched Hessian information for sparse $$\ell _1$$ ℓ 1 -optimization," Computational Optimization and Applications, Springer, vol. 67(2), pages 225-258, June.
- Xiaoya Zhang & Wei Peng & Hui Zhang, 2022. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 187-213, October.
- Bonettini, S. & Prato, M. & Rebegoldi, S., 2021. "New convergence results for the inexact variable metric forward–backward method," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Daoli Zhu & Sien Deng & Minghua Li & Lei Zhao, 2021. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 889-918, June.
- Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
- Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
- Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
- Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
More about this item
Keywords
Convex optimization; Nonconvex optimization; Regularized optimization; Variable metric; Proximal method; Second-order approximation; Inexact method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00059-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.