IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v80y2021i4d10.1007_s10898-021-01046-7.html
   My bibliography  Save this article

Convex hull representations for bounded products of variables

Author

Listed:
  • Kurt M. Anstreicher

    (University of Iowa)

  • Samuel Burer

    (University of Iowa)

  • Kyungchan Park

    (University of Iowa)

Abstract

It is well known that the convex hull of $$\{{(x,y,xy)}\}$$ { ( x , y , x y ) } , where (x, y) is constrained to lie in a box, is given by the reformulation-linearization technique (RLT) constraints. Belotti et al. (Electron Notes Discrete Math 36:805–812, 2010) and Miller et al. (SIAG/OPT Views News 22(1):1–8, 2011) showed that if there are additional upper and/or lower bounds on the product $$z=xy$$ z = x y , then the convex hull can be represented by adding an infinite family of inequalities, requiring a separation algorithm to implement. Nguyen et al. (Math Progr 169(2):377–415, 2018) derived convex hulls for $$\{(x,y,z)\}$$ { ( x , y , z ) } with bounds on $$z=xy^b$$ z = x y b , $$b\ge 1$$ b ≥ 1 . We focus on the case where $$b=1$$ b = 1 and show that the convex hull with either an upper bound or lower bound on the product is given by RLT constraints, the bound on z and a single second-order cone (SOC) constraint. With both upper and lower bounds on the product, the convex hull can be represented using no more than three SOC constraints, each applicable on a subset of (x, y) values. In addition to the convex hull characterizations, volumes of the convex hulls with either an upper or lower bound on z are calculated and compared to the relaxation that imposes only the RLT constraints. As an application of these volume results, we show how spatial branching can be applied to the product variable so as to minimize the sum of the volumes for the two resulting subproblems.

Suggested Citation

  • Kurt M. Anstreicher & Samuel Burer & Kyungchan Park, 2021. "Convex hull representations for bounded products of variables," Journal of Global Optimization, Springer, vol. 80(4), pages 757-778, August.
  • Handle: RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-021-01046-7
    DOI: 10.1007/s10898-021-01046-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01046-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01046-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    2. Emily Speakman & Jon Lee, 2018. "On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation," Journal of Global Optimization, Springer, vol. 72(2), pages 129-153, October.
    3. Mohammed Alfaki & Dag Haugland, 2013. "Strong formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 56(3), pages 897-916, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    2. Natashia Boland & Thomas Kalinowski & Fabian Rigterink, 2016. "New multi-commodity flow formulations for the pooling problem," Journal of Global Optimization, Springer, vol. 66(4), pages 669-710, December.
    3. Wei Jiang & Huiqiang Wang & Bingyang Li & Haibin Lv & Qingchuan Meng, 2020. "A multi-user multi-operator computing pricing method for Internet of things based on bi-level optimization," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477199, January.
    4. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    5. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    6. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    7. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    8. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    9. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    10. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    11. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    12. Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
    13. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    14. Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
    15. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    16. Jon Lee & Daphne Skipper & Emily Speakman, 2022. "Gaining or losing perspective," Journal of Global Optimization, Springer, vol. 82(4), pages 835-862, April.
    17. Marcia Fampa & Jon Lee, 2021. "Convexification of bilinear forms through non-symmetric lifting," Journal of Global Optimization, Springer, vol. 80(2), pages 287-305, June.
    18. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    19. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    20. Kazda, Kody & Li, Xiang, 2024. "A linear programming approach to difference-of-convex piecewise linear approximation," European Journal of Operational Research, Elsevier, vol. 312(2), pages 493-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-021-01046-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.