IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i2d10.1007_s10898-024-01408-x.html
   My bibliography  Save this article

Deep learning the efficient frontier of convex vector optimization problems

Author

Listed:
  • Zachary Feinstein

    (Stevens Institute of Technology)

  • Birgit Rudloff

    (Vienna University of Economics and Business)

Abstract

In this paper, we design a neural network architecture to approximate the weakly efficient frontier of convex vector optimization problems (CVOP) satisfying Slater’s condition. The proposed machine learning methodology provides both an inner and outer approximation of the weakly efficient frontier, as well as an upper bound to the error at each approximated efficient point. In numerical case studies we demonstrate that the proposed algorithm is effectively able to approximate the true weakly efficient frontier of CVOPs. This remains true even for large problems (i.e., many objectives, variables, and constraints) and thus overcoming the curse of dimensionality.

Suggested Citation

  • Zachary Feinstein & Birgit Rudloff, 2024. "Deep learning the efficient frontier of convex vector optimization problems," Journal of Global Optimization, Springer, vol. 90(2), pages 429-458, October.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:2:d:10.1007_s10898-024-01408-x
    DOI: 10.1007/s10898-024-01408-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01408-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01408-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    2. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    3. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    4. Gabriele Eichfelder & Leo Warnow, 2021. "Proximity measures based on KKT points for constrained multi-objective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 63-86, May.
    5. Matthias Ehrgott & Lizhen Shao & Anita Schöbel, 2011. "An approximation algorithm for convex multi-objective programming problems," Journal of Global Optimization, Springer, vol. 50(3), pages 397-416, July.
    6. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary Feinstein & Birgit Rudloff, 2022. "Deep Learning the Efficient Frontier of Convex Vector Optimization Problems," Papers 2205.07077, arXiv.org, revised May 2024.
    2. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.
    3. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    4. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    5. Daniel Dörfler, 2022. "On the Approximation of Unbounded Convex Sets by Polyhedra," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 265-287, July.
    6. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    7. Gabriele Eichfelder & Julia Niebling & Stefan Rocktäschel, 2020. "An algorithmic approach to multiobjective optimization with decision uncertainty," Journal of Global Optimization, Springer, vol. 77(1), pages 3-25, May.
    8. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    9. Birgit Rudloff & Firdevs Ulus, 2019. "Certainty Equivalent and Utility Indifference Pricing for Incomplete Preferences via Convex Vector Optimization," Papers 1904.09456, arXiv.org, revised Oct 2020.
    10. Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
    11. Raimundo, Marcos M. & Ferreira, Paulo A.V. & Von Zuben, Fernando J., 2020. "An extension of the non-inferior set estimation algorithm for many objectives," European Journal of Operational Research, Elsevier, vol. 284(1), pages 53-66.
    12. Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
    13. Gabriela Kováčová & Birgit Rudloff, 2022. "Convex projection and convex multi-objective optimization," Journal of Global Optimization, Springer, vol. 83(2), pages 301-327, June.
    14. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Discussion Paper 2023-012, Tilburg University, Center for Economic Research.
    15. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    16. Koenen, Melissa & Balvert, Marleen & Fleuren, H.A., 2023. "A Renewed Take on Weighted Sum in Sandwich Algorithms : Modification of the Criterion Space," Other publications TiSEM 795b6c0c-c7bc-4ced-9d6b-a, Tilburg University, School of Economics and Management.
    17. Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.
    18. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    19. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    20. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:2:d:10.1007_s10898-024-01408-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.