IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i3d10.1007_s10898-020-00948-2.html
   My bibliography  Save this article

Optimal correction of the absolute value equations

Author

Listed:
  • Hossein Moosaei

    (Charles University
    Faculty of Science, University of Bojnord)

  • Saeed Ketabchi

    (University of Guilan)

  • Milan Hladík

    (Charles University)

Abstract

In this paper, we study the optimum correction of the absolute value equations through making minimal changes in the coefficient matrix and the right hand side vector and using spectral norm. This problem can be formulated as a non-differentiable, non-convex and unconstrained fractional quadratic programming problem. The regularized least squares is applied for stabilizing the solution of the fractional problem. The regularized problem is reduced to a unimodal single variable minimization problem and to solve it a bisection algorithm is proposed. The main difficulty of the algorithm is a complicated constraint optimization problem, for which two novel methods are suggested. We also present optimality conditions and bounds for the norm of the optimal solutions. Numerical experiments are given to demonstrate the effectiveness of suggested methods.

Suggested Citation

  • Hossein Moosaei & Saeed Ketabchi & Milan Hladík, 2021. "Optimal correction of the absolute value equations," Journal of Global Optimization, Springer, vol. 79(3), pages 645-667, March.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00948-2
    DOI: 10.1007/s10898-020-00948-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00948-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00948-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oleg Prokopyev, 2009. "On equivalent reformulations for absolute value equations," Computational Optimization and Applications, Springer, vol. 44(3), pages 363-372, December.
    2. Saeed Ketabchi & Hossein Moosaei, 2012. "Optimal Error Correction and Methods of Feasible Directions," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 209-216, July.
    3. Moosaei, H. & Ketabchi, S. & Noor, M.A. & Iqbal, J. & Hooshyarbakhsh, V., 2015. "Some techniques for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 696-705.
    4. O. L. Mangasarian, 2004. "A Newton Method for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 1-18, April.
    5. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    6. Paula Amaral & Luís Fernandes & Joaquim Júdice & Hanif Sherali, 2009. "On optimal zero-preserving corrections for inconsistent linear systems," Computational Optimization and Applications, Springer, vol. 45(4), pages 645-666, December.
    7. Shi-Liang Wu & Peng Guo, 2016. "On the Unique Solvability of the Absolute Value Equation," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 705-712, May.
    8. Saeed Ketabchi & Hossein Moosaei, 2012. "Minimum Norm Solution to the Absolute Value Equation in the Convex Case," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 1080-1087, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Liang & Chaoqian Li, 2023. "Modified Picard-like Method for Solving Absolute Value Equations," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Hossein Moosaei & Milan Hladík, 2021. "On the Optimal Correction of Infeasible Systems of Linear Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 32-55, July.
    3. Milan Hladík, 2018. "Bounds for the solutions of absolute value equations," Computational Optimization and Applications, Springer, vol. 69(1), pages 243-266, January.
    4. Saeed Ketabchi & Hossein Moosaei, 2012. "Minimum Norm Solution to the Absolute Value Equation in the Convex Case," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 1080-1087, September.
    5. Olvi L. Mangasarian, 2014. "Absolute Value Equation Solution Via Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 870-876, June.
    6. An Wang & Yang Cao & Jing-Xian Chen, 2019. "Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 216-230, April.
    7. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    8. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    9. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    10. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    11. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    12. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    13. Luke Winternitz & Stacey Nicholls & André Tits & Dianne O’Leary, 2012. "A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm," Computational Optimization and Applications, Springer, vol. 51(3), pages 1001-1036, April.
    14. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    15. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    16. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    17. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    18. A. K. Das, 2016. "Properties of some matrix classes based on principal pivot transform," Annals of Operations Research, Springer, vol. 243(1), pages 375-382, August.
    19. Meijuan Shang & Chao Zhang & Naihua Xiu, 2014. "Minimal Zero Norm Solutions of Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 795-814, December.
    20. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00948-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.