IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v156y2013i2d10.1007_s10957-012-0145-z.html
   My bibliography  Save this article

An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming

Author

Listed:
  • Alfred Auslender

    (University Lyon I
    Ecole Polytechnique)

Abstract

This paper is concerned with nonlinear, semidefinite, and second-order cone programs. A general algorithm, which includes sequential quadratic programming and sequential quadratically constrained quadratic programming methods, is presented for solving these problems. In the particular case of standard nonlinear programs, the algorithm can be interpreted as a prox-regularization of the Solodov sequential quadratically constrained quadratic programming method presented in Mathematics of Operations Research (2004). For such type of methods, the main cost of computation amounts to solve a linear cone program for which efficient solvers are available. Usually, “global convergence results” for these methods require, as for the Solodov method, the boundedness of the primal sequence generated by the algorithm. The other purpose of this paper is to establish global convergence results without boundedness assumptions on any of the iterative sequences built by the algorithm.

Suggested Citation

  • Alfred Auslender, 2013. "An Extended Sequential Quadratically Constrained Quadratic Programming Algorithm for Nonlinear, Semidefinite, and Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 183-212, February.
  • Handle: RePEc:spr:joptap:v:156:y:2013:i:2:d:10.1007_s10957-012-0145-z
    DOI: 10.1007/s10957-012-0145-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0145-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0145-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. V. Solodov, 2004. "On the Sequential Quadratically Constrained Quadratic Programming Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 64-79, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    2. Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    2. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    3. Jin-bao Jian & Xing-de Mo & Li-juan Qiu & Su-ming Yang & Fu-sheng Wang, 2014. "Simple Sequential Quadratically Constrained Quadratic Programming Feasible Algorithm with Active Identification Sets for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 158-188, January.
    4. Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.
    5. Jian, Jin-Bao & Tang, Chun-Ming & Zheng, Hai-Yan, 2010. "Sequential quadratically constrained quadratic programming norm-relaxed algorithm of strongly sub-feasible directions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 645-657, February.
    6. A. Izmailov & M. Solodov, 2010. "Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization," Computational Optimization and Applications, Springer, vol. 46(2), pages 347-368, June.
    7. Tao-Wen Liu, 2011. "A reduced Hessian SQP method for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 49(1), pages 31-59, May.
    8. Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:156:y:2013:i:2:d:10.1007_s10957-012-0145-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.