IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i2d10.1007_s00291-021-00641-0.html
   My bibliography  Save this article

Multicriteria asset allocation in practice

Author

Listed:
  • Kerstin Dächert

    (Fraunhofer ITWM, Department of Financial Mathematics)

  • Ria Grindel

    (Fraunhofer ITWM, Department of Financial Mathematics)

  • Elisabeth Leoff

    (Fraunhofer ITWM, Department of Financial Mathematics)

  • Jonas Mahnkopp

    (Fraunhofer ITWM, Department of Financial Mathematics)

  • Florian Schirra

    (Fraunhofer ITWM, Department of Financial Mathematics)

  • Jörg Wenzel

    (Fraunhofer ITWM, Department of Financial Mathematics)

Abstract

In this paper, we consider the strategic asset allocation of an insurance company. This task can be seen as a special case of portfolio optimization. In the 1950s, Markowitz proposed to formulate portfolio optimization as a bicriteria optimization problem considering risk and return as objectives. However, recent developments in the field of insurance require four and more objectives to be considered, among them the so-called solvency ratio that stems from the Solvency II directive of the European Union issued in 2009. Moreover, the distance to the current portfolio plays an important role. While the literature on portfolio optimization with three objectives is already scarce, applications in the financial context with four and more objectives have not yet been solved so far by multi-objective approaches based on scalarizations. However, recent algorithmic improvements in the field of exact multi-objective methods allow the incorporation of many objectives and the generation of well-spread representations within few iterations. We describe the implementation of such an algorithm for a strategic asset allocation with four objective functions and demonstrate its usefulness for the practitioner. Our approach is in operative use in a German insurance company. Our partners report a significant improvement in their decision-making process since, due to the proper integration of the new objectives, the software proposes portfolios of much better quality than before within short running time.

Suggested Citation

  • Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:2:d:10.1007_s00291-021-00641-0
    DOI: 10.1007/s00291-021-00641-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00641-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00641-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    2. Ralf Korn, 1998. "Portfolio optimisation with strictly positive transaction costs and impulse control," Finance and Stochastics, Springer, vol. 2(2), pages 85-114.
    3. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    4. Yue Qi & Ralph E. Steuer & Maximilian Wimmer, 2017. "An analytical derivation of the efficient surface in portfolio selection with three criteria," Annals of Operations Research, Springer, vol. 251(1), pages 161-177, April.
    5. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    6. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    7. Roy Kouwenberg, 2018. "Strategic asset allocation for insurers under Solvency II," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 447-459, December.
    8. Ioannis Karatzas & John P. Lehoczky & Suresh P. Sethi & Steven E. Shreve, 1986. "Explicit Solution of a General Consumption/Investment Problem," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 261-294, May.
    9. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    10. Marcos Escobar & Paul Kriebel & Markus Wahl & Rudi Zagst, 2019. "Portfolio optimization under Solvency II," Annals of Operations Research, Springer, vol. 281(1), pages 193-227, October.
    11. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    12. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    13. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    14. Krishnamurthy, Vikram & Leoff, Elisabeth & Sass, Jörn, 2018. "Filterbased stochastic volatility in continuous-time hidden Markov models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 1-21.
    15. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    16. Kerstin Dächert & Kathrin Klamroth, 2015. "A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems," Journal of Global Optimization, Springer, vol. 61(4), pages 643-676, April.
    17. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    18. Markus Hirschberger & Ralph E. Steuer & Sebastian Utz & Maximilian Wimmer & Yue Qi, 2013. "Computing the Nondominated Surface in Tri-Criterion Portfolio Selection," Operations Research, INFORMS, vol. 61(1), pages 169-183, February.
    19. Ralf Korn & Paul Wilmott, 2002. "Optimal Portfolios Under The Threat Of A Crash," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 171-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivica Turkalj & Mohammad Assadsolimani & Markus Braun & Pascal Halffmann & Niklas Hegemann & Sven Kerstan & Janik Maciejewski & Shivam Sharma & Yuanheng Zhou, 2024. "Quadratic Unconstrained Binary Optimization Approach for Incorporating Solvency Capital into Portfolio Optimization," Risks, MDPI, vol. 12(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Dachert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jorg Wenzel, 2021. "Multicriteria asset allocation in practice," Papers 2103.10958, arXiv.org.
    2. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    3. Villena, Marcelo J. & Reus, Lorenzo, 2016. "On the strategic behavior of large investors: A mean-variance portfolio approach," European Journal of Operational Research, Elsevier, vol. 254(2), pages 679-688.
    4. Soren Christensen & Marc Wittlinger, 2012. "Optimal relaxed portfolio strategies for growth rate maximization problems with transaction costs," Papers 1209.0305, arXiv.org, revised Jun 2013.
    5. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    6. Chellathurai, Thamayanthi & Draviam, Thangaraj, 2007. "Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2168-2195, July.
    7. Leal, Marina & Ponce, Diego & Puerto, Justo, 2020. "Portfolio problems with two levels decision-makers: Optimal portfolio selection with pricing decisions on transaction costs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 712-727.
    8. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    9. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    10. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    11. Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
    12. Martin Herdegen & David Hobson & Joseph Jerome, 2021. "An elementary approach to the Merton problem," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1218-1239, October.
    13. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2002. "An approximation algorithm for optimal consumption/investment problems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 55-69, April.
    14. Engler, Tina & Korn, Ralf, 2014. "Worst-case portfolio optimization under stochastic interest rate risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(4), pages 469-488.
    15. Tina Engler & Ralf Korn, 2014. "Worst-Case Portfolio Optimization under Stochastic Interest Rate Risk," Risks, MDPI, vol. 2(4), pages 1-20, December.
    16. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    17. Peter Diesinger & Holger Kraft & Frank Seifried, 2010. "Asset allocation and liquidity breakdowns: what if your broker does not answer the phone?," Finance and Stochastics, Springer, vol. 14(3), pages 343-374, September.
    18. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    19. Soren Christensen & Albrecht Irle & Andreas Ludwig, 2016. "Optimal portfolio selection under vanishing fixed transaction costs," Papers 1611.01280, arXiv.org, revised Jul 2017.
    20. Belak, Christoph & Christensen, Sören & Menkens, Olaf, 2014. "Worst-case optimal investment with a random number of crashes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 140-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:2:d:10.1007_s00291-021-00641-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.