IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i3p858-875.html
   My bibliography  Save this article

Preprocessing and cut generation techniques for multi-objective binary programming

Author

Listed:
  • Boland, Natashia
  • Charkhgard, Hadi
  • Savelsbergh, Martin

Abstract

We present the theoretical foundations for a number of preprocessing and cut generation techniques for multi-objective binary programs. The techniques are based on a characterization of conditions under which the objective functions of a multi-objective binary program guarantee the existence of an ideal point in criterion space, i.e., the existence of a feasible solution that simultaneously minimizes all objectives. Even though few multi-objective binary programs of interest have objective functions satisfying these conditions, the conditions are likely to be satisfied for a subset of the objective functions and/or be satisfied when the objective functions are restricted to a subset of the variables. We show that recognizing whether or not this occurs is NP-hard, but can be done in pseudo-polynomial time. The preprocessing and cut generation techniques can be incorporated in any decision or criterion space search algorithm for multi-objective binary programs. Preliminary computational tests demonstrate their potential in practice.

Suggested Citation

  • Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:858-875
    DOI: 10.1016/j.ejor.2018.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gal, Tomas & Hanne, Thomas, 2006. "Nonessential objectives within network approaches for MCDM," European Journal of Operational Research, Elsevier, vol. 168(2), pages 584-592, January.
    2. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "A new method for optimizing a linear function over the efficient set of a multiobjective integer program," European Journal of Operational Research, Elsevier, vol. 260(3), pages 904-919.
    3. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    4. A. B. Malinowska & D. F. M. Torres, 2008. "Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 577-590, December.
    5. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1998. "Lifted Cover Inequalities for 0-1 Integer Programs: Computation," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 427-437, November.
    6. Alexander Engau & Margaret M. Wiecek, 2008. "Interactive Coordination of Objective Decompositions in Multiobjective Programming," Management Science, INFORMS, vol. 54(7), pages 1350-1363, July.
    7. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    8. Lindroth, Peter & Patriksson, Michael & Strömberg, Ann-Brith, 2010. "Approximating the Pareto optimal set using a reduced set of objective functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1519-1534, December.
    9. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    10. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    11. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
    12. Nguyen Thoai, 2012. "Criteria and dimension reduction of linear multiple criteria optimization problems," Journal of Global Optimization, Springer, vol. 52(3), pages 499-508, March.
    13. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    14. Banu Lokman & Murat Köksalan, 2013. "Finding all nondominated points of multi-objective integer programs," Journal of Global Optimization, Springer, vol. 57(2), pages 347-365, October.
    15. Gal, Tomas & Hanne, Thomas, 1999. "Consequences of dropping nonessential objectives for the application of MCDM methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 373-378, December.
    16. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2020. "Approximating combinatorial optimization problems with the ordered weighted averaging criterion," European Journal of Operational Research, Elsevier, vol. 286(3), pages 828-838.
    2. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    3. Tarhan, İstenç & Zografos, Konstantinos G. & Sutanto, Juliana & Kheiri, Ahmed, 2024. "A quadrant shrinking heuristic for solving the dynamic multi-objective disaster response personnel routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 314(2), pages 776-791.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    2. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
    3. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    4. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    5. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    6. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    7. Diego Pecin & Ian Herszterg & Tyler Perini & Natashia Boland & Martin Savelsbergh, 2024. "A fast and robust algorithm for solving biobjective mixed integer programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 221-262, August.
    8. Mansini, Renata & Zanella, Marina & Zanotti, Roberto, 2023. "Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff," Omega, Elsevier, vol. 114(C).
    9. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    10. Özarık, Sami Serkan & Lokman, Banu & Köksalan, Murat, 2020. "Distribution based representative sets for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 632-643.
    11. Seyyed Amir Babak Rasmi & Ali Fattahi & Metin Türkay, 2021. "SASS: slicing with adaptive steps search method for finding the non-dominated points of tri-objective mixed-integer linear programming problems," Annals of Operations Research, Springer, vol. 296(1), pages 841-876, January.
    12. Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
    13. Nicolas Dupin, 2017. "Tighter MIP formulations for the discretised unit commitment problem with min-stop ramping constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 149-176, March.
    14. Tolga Bektaş, 2018. "Disjunctive Programming for Multiobjective Discrete Optimisation," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 625-633, November.
    15. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
    16. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    17. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    18. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    19. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
    20. Sunney Fotedar & Ann-Brith Strömberg & Torgny Almgren & Stefan Cedergren, 2023. "A criterion space decomposition approach to generalized tri-objective tactical resource allocation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:858-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.