IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-023-02285-2.html
   My bibliography  Save this article

A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization

Author

Listed:
  • Gabriele Eichfelder

    (Technische Universität Ilmenau)

  • Oliver Stein

    (Karlsruhe Institute of Technology (KIT))

  • Leo Warnow

    (Technische Universität Ilmenau)

Abstract

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are covered and form the motivation of our studies. The presented algorithm is based on a branch-and-bound method in the pre-image space, a technique which was already successfully applied for continuous nonconvex multiobjective optimization. However, extending this method to the mixed-integer setting is not straightforward, in particular with regard to convergence results. More precisely, new branching rules and lower bounding procedures are needed to obtain an algorithm that is practically applicable and convergent for multiobjective mixed-integer optimization problems. Corresponding results are a main contribution of this paper. What is more, for improving the performance of this new branch-and-bound method we enhance it with two types of cuts in the image space which are based on ideas from multiobjective mixed-integer convex optimization. Those combine continuous convex relaxations with adaptive cuts for the convex hull of the mixed-integer image set, derived from supporting hyperplanes to the relaxed sets. Based on the above ingredients, the paper provides a new multiobjective mixed-integer solver for convex problems with a stopping criterion purely in the image space. What is more, for the first time a solver for multiobjective mixed-integer nonconvex optimization is presented. We provide the results of numerical tests for the new algorithm. Where possible, we compare it with existing procedures.

Suggested Citation

  • Gabriele Eichfelder & Oliver Stein & Leo Warnow, 2024. "A Solver for Multiobjective Mixed-Integer Convex and Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1736-1766, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-023-02285-2
    DOI: 10.1007/s10957-023-02285-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02285-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02285-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Fernández & Boglárka Tóth, 2009. "Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods," Computational Optimization and Applications, Springer, vol. 42(3), pages 393-419, April.
    2. Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2015. "On the representation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 245(3), pages 767-778.
    3. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    4. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    5. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    6. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    7. Gabriele Eichfelder & Patrick Groetzner, 2022. "A note on completely positive relaxations of quadratic problems in a multiobjective framework," Journal of Global Optimization, Springer, vol. 82(3), pages 615-626, March.
    8. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    9. Soghra Nobakhtian & Narjes Shafiei, 2017. "A Benson type algorithm for nonconvex multiobjective programming problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 271-287, July.
    10. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    11. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    12. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "Correction to: A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 229-229, May.
    13. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    2. Eichfelder, Gabriele & Warnow, Leo, 2023. "Advancements in the computation of enclosures for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 310(1), pages 315-327.
    3. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    4. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    5. Gabriele Eichfelder & Leo Warnow, 2024. "A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 291-320, August.
    6. Çağın Ararat & Firdevs Ulus & Muhammad Umer, 2022. "A Norm Minimization-Based Convex Vector Optimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 681-712, August.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Doğan, Ilgın & Lokman, Banu & Köksalan, Murat, 2022. "Representing the nondominated set in multi-objective mixed-integer programs," European Journal of Operational Research, Elsevier, vol. 296(3), pages 804-818.
    9. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    10. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    11. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.
    12. Pham Thi Hoai & Hoai An Le Thi & Nguyen Canh Nam, 2021. "Half-open polyblock for the representation of the search region in multiobjective optimization problems: its application and computational aspects," 4OR, Springer, vol. 19(1), pages 41-70, March.
    13. Kerstin Dächert & Tino Fleuren & Kathrin Klamroth, 2024. "A simple, efficient and versatile objective space algorithm for multiobjective integer programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 351-384, August.
    14. Samira Fallah & Ted K. Ralphs & Natashia L. Boland, 2024. "On the relationship between the value function and the efficient frontier of a mixed integer linear optimization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 175-220, August.
    15. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    16. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    17. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    18. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    19. Lang, Magdalena A.K. & Cleophas, Catherine & Ehmke, Jan Fabian, 2021. "Multi-criteria decision making in dynamic slotting for attended home deliveries," Omega, Elsevier, vol. 102(C).
    20. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-023-02285-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.