IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i1p173-190.html
   My bibliography  Save this article

Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces

Author

Listed:
  • Phan Vuong
  • Jean Strodiot
  • Van Nguyen

Abstract

In this paper, we introduce and study some low computational cost numerical methods for finding a solution of a variational inequality problem over the solution set of an equilibrium problem in a real Hilbert space. The strong convergence of the iterative sequences generated by the proposed algorithms is obtained by combining viscosity-type approximations with projected subgradient techniques. First a general scheme is proposed, and afterwards two practical realizations of it are studied depending on the characteristics of the feasible set. When this set is described by convex inequalities, the projections onto the feasible set are replaced by projections onto half-spaces with the consequence that most iterates are outside the feasible domain. On the other hand, when the projections onto the feasible set can be easily computed, the method generates feasible points and can be considered as a generalization of Maingé’s method to equilibrium problem constraints. In both cases, the strong convergence of the sequences generated by the proposed algorithms is proven. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Phan Vuong & Jean Strodiot & Van Nguyen, 2014. "Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces," Journal of Global Optimization, Springer, vol. 59(1), pages 173-190, May.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:173-190
    DOI: 10.1007/s10898-013-0084-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0084-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0084-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regina S. Burachik & Alfredo N. Iusem, 2008. "Set-Valued Mappings and Enlargements of Monotone Operators," Springer Optimization and Its Applications, Springer, number 978-0-387-69757-4, June.
    2. Jean Strodiot & Thi Nguyen & Van Nguyen, 2013. "A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 56(2), pages 373-397, June.
    3. Regina S. Burachik & Alfredo N. Iusem, 2008. "Enlargements of Monotone Operators," Springer Optimization and Its Applications, in: Set-Valued Mappings and Enlargements of Monotone Operators, chapter 0, pages 161-220, Springer.
    4. H. Iiduka, 2009. "Hybrid Conjugate Gradient Method for a Convex Optimization Problem over the Fixed-Point Set of a Nonexpansive Mapping," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 463-475, March.
    5. Masao Fukushima, 1983. "An Outer Approximation Algorithm for Solving General Convex Programs," Operations Research, INFORMS, vol. 31(1), pages 101-113, February.
    6. L. D. Muu & T. D. Quoc, 2009. "Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 185-204, July.
    7. N. Nadezhkina & W. Takahashi, 2006. "Weak Convergence Theorem by an Extragradient Method for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 191-201, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    2. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    3. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    2. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    3. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    4. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    5. Yekini Shehu & Lulu Liu & Xiaolong Qin & Qiao-Li Dong, 2022. "Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models," Networks and Spatial Economics, Springer, vol. 22(1), pages 153-180, March.
    6. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    7. Sedi Bartz & Minh N. Dao & Hung M. Phan, 2022. "Conical averagedness and convergence analysis of fixed point algorithms," Journal of Global Optimization, Springer, vol. 82(2), pages 351-373, February.
    8. Rubén López, 2013. "Variational convergence for vector-valued functions and its applications to convex multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 1-34, August.
    9. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    10. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    11. Warunun Inthakon & Suthep Suantai & Panitarn Sarnmeta & Dawan Chumpungam, 2020. "A New Machine Learning Algorithm Based on Optimization Method for Regression and Classification Problems," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    12. Jonathan M. Borwein & Liangjin Yao, 2013. "Structure Theory for Maximally Monotone Operators with Points of Continuity," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 1-24, April.
    13. Ludovic Nagesseur, 2016. "A bundle method using two polyhedral approximations of the $$\varepsilon $$ ε -enlargement of a maximal monotone operator," Computational Optimization and Applications, Springer, vol. 64(1), pages 75-100, May.
    14. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    15. Juan Pablo Luna & Claudia Sagastizábal & Mikhail Solodov, 2020. "A class of Benders decomposition methods for variational inequalities," Computational Optimization and Applications, Springer, vol. 76(3), pages 935-959, July.
    16. Edvaldo E. A. Batista & Glaydston de Carvalho Bento & Orizon P. Ferreira, 2016. "Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 916-931, September.
    17. J. Y. Bello Cruz & R. Díaz Millán, 2016. "A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces," Journal of Global Optimization, Springer, vol. 65(3), pages 597-614, July.
    18. Heinz H. Bauschke & Warren L. Hare & Walaa M. Moursi, 2016. "On the Range of the Douglas–Rachford Operator," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 884-897, August.
    19. Regina S. Burachik & C. Yalçın Kaya & Shoham Sabach, 2012. "A Generalized Univariate Newton Method Motivated by Proximal Regularization," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 923-940, December.
    20. Hsien-Chung Wu, 2018. "Near Fixed Point Theorems in Hyperspaces," Mathematics, MDPI, vol. 6(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:173-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.