IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i3p938-956.html
   My bibliography  Save this article

Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem

Author

Listed:
  • Guastaroba, G.
  • Mansini, R.
  • Ogryczak, W.
  • Speranza, M.G.

Abstract

Modern performance measures differ from the classical ones since they assess the performance against a benchmark and usually account for asymmetry in return distributions. The Omega ratio is one of these measures. Until recently, limited research has addressed the optimization of the Omega ratio since it has been thought to be computationally intractable. The Enhanced Index Tracking Problem (EITP) is the problem of selecting a portfolio of securities able to outperform a market index while bearing a limited additional risk. In this paper, we propose two novel mathematical formulations for the EITP based on the Omega ratio. The first formulation applies a standard definition of the Omega ratio where it is computed with respect to a given value, whereas the second formulation considers the Omega ratio with respect to a random target. We show how each formulation, nonlinear in nature, can be transformed into a Linear Programming model. We further extend the models to include real features, such as a cardinality constraint and buy-in thresholds on the investments, obtaining Mixed Integer Linear Programming problems. Computational results conducted on a large set of benchmark instances show that the portfolios selected by the model assuming a standard definition of the Omega ratio are consistently outperformed, in terms of out-of-sample performance, by those obtained solving the model that considers a random target. Furthermore, in most of the instances the portfolios optimized with the latter model mimic very closely the behavior of the benchmark over the out-of-sample period, while yielding, sometimes, significantly larger returns.

Suggested Citation

  • Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:938-956
    DOI: 10.1016/j.ejor.2015.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715010863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manfred Gilli & Enrico Schumann, 2008. "Distributed Optimisation of a Portfolio's Omega," Swiss Finance Institute Research Paper Series 08-17, Swiss Finance Institute.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    3. Guastaroba, Gianfranco & Mansini, Renata & Speranza, M. Grazia, 2009. "On the effectiveness of scenario generation techniques in single-period portfolio optimization," European Journal of Operational Research, Elsevier, vol. 192(2), pages 500-511, January.
    4. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    5. Miguel A. Lejeune & Gülay Samatlı-Paç, 2013. "Construction of Risk-Averse Enhanced Index Funds," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 701-719, November.
    6. Kapsos, Michalis & Christofides, Nicos & Rustem, Berç, 2014. "Worst-case robust Omega ratio," European Journal of Operational Research, Elsevier, vol. 234(2), pages 499-507.
    7. Gruber, Martin J, 1996. "Another Puzzle: The Growth in Activity Managed Mutual Funds," Journal of Finance, American Finance Association, vol. 51(3), pages 783-810, July.
    8. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    9. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    10. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    11. Manfred GILLI & Enrico SCHUMANN & Giacomo DI TOLLO & Gerda CABEJ, 2008. "Constructing Long/Short Portfolios with the Omega ratio," Swiss Finance Institute Research Paper Series 08-34, Swiss Finance Institute.
    12. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    13. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    14. Alex Frino & David R. Gallagher & Teddy N. Oetomo, 2005. "The Index Tracking Strategies of Passive and Enhanced Index Equity Funds," Australian Journal of Management, Australian School of Business, vol. 30(1), pages 23-55, June.
    15. N. Meade & J. E. Beasley, 2011. "Detection of momentum effects using an index out-performance strategy," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 313-326.
    16. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    17. Miguel A. Lejeune, 2012. "Game Theoretical Approach for Reliable Enhanced Indexation," Decision Analysis, INFORMS, vol. 9(2), pages 146-155, June.
    18. Canakgoz, N.A. & Beasley, J.E., 2009. "Mixed-integer programming approaches for index tracking and enhanced indexation," European Journal of Operational Research, Elsevier, vol. 196(1), pages 384-399, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    3. Fengmin Xu & Meihua Wang & Yu-Hong Dai & Dachuan Xu, 2018. "A sparse enhanced indexation model with chance and cardinality constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 5-25, January.
    4. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    5. Zhiping Chen & Xinkai Zhuang & Jia Liu, 2019. "A Sustainability-Oriented Enhanced Indexation Model with Regime Switching and Cardinality Constraint," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Li, Xuepeng & Xu, Fengmin & Jing, Kui, 2022. "Robust enhanced indexation with ESG: An empirical study in the Chinese Stock Market," Economic Modelling, Elsevier, vol. 107(C).
    7. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2018. "Index tracking model, downside risk and non-parametric kernel estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 103-128.
    8. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2022. "Partial moments and indexation investment strategies," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 39-59.
    9. Patrizia Beraldi & Maria Elena Bruni, 2022. "Enhanced indexation via chance constraints," Operational Research, Springer, vol. 22(2), pages 1553-1573, April.
    10. Francesco Cesarone & Raffaello Cesetti & Giuseppe Orlando & Manuel Luis Martino & Jacopo Maria Ricci, 2022. "Comparing SSD-Efficient Portfolios with a Skewed Reference Distribution," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    11. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    12. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    13. H Mezali & J E Beasley, 2013. "Quantile regression for index tracking and enhanced indexation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1676-1692, November.
    14. Wu, Dexiang & Kwon, Roy H. & Costa, Giorgio, 2017. "A constrained cluster-based approach for tracking the S&P 500 index," International Journal of Production Economics, Elsevier, vol. 193(C), pages 222-243.
    15. Ruchika Sehgal & Aparna Mehra, 2019. "Enhanced indexing using weighted conditional value at risk," Annals of Operations Research, Springer, vol. 280(1), pages 211-240, September.
    16. Ruchika Sehgal & Aparna Mehra, 2023. "Quantile Regression Based Enhanced Indexing with Portfolio Rebalancing," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(3), pages 721-742, September.
    17. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    18. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    19. Francesco Cesarone & Justo Puerto, 2024. "New approximate stochastic dominance approaches for Enhanced Indexation models," Papers 2401.12669, arXiv.org.
    20. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).

    More about this item

    Keywords

    Enhanced index tracking; Omega ratio; Portfolio optimization; Linear programming; Mixed integer linear programming;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:938-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.