IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i4d10.1007_s10898-017-0501-5.html
   My bibliography  Save this article

Global probability maximization for a Gaussian bilateral inequality in polynomial time

Author

Listed:
  • Michel Minoux

    (UPMC - LIP6)

  • Riadh Zorgati

    (EDF Lab Paris-Saclay R&D OSIRIS)

Abstract

The present paper investigates Gaussian bilateral inequalities in view of solving related probability maximization problems. Since the function f representing the probability of satisfaction of a given Gaussian bilateral inequality is not concave everywhere, we first state and prove a necessary and sufficient condition for negative semi-definiteness of the Hessian. Then, the (nonconvex) problem of globally maximizing f over a given polyhedron in $$\mathbb {R}^{n}$$ R n is adressed, and shown to be polynomial-time solvable, thus yielding a new-comer to the (short) list of nonconvex global optimization problems which can be solved exactly in polynomial time. Application to computing upper bounds to the maximum joint probability of satisfaction of a set of m independent Gaussian bilateral inequalities is discussed and computational results are reported.

Suggested Citation

  • Michel Minoux & Riadh Zorgati, 2017. "Global probability maximization for a Gaussian bilateral inequality in polynomial time," Journal of Global Optimization, Springer, vol. 68(4), pages 879-898, August.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:4:d:10.1007_s10898-017-0501-5
    DOI: 10.1007/s10898-017-0501-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0501-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0501-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    2. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    3. Wim Van Ackooij & René Henrion & Andris Möller & Riadh Zorgati, 2010. "On probabilistic constraints induced by rectangular sets and multivariate normal distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 535-549, June.
    4. René Henrion & Cyrille Strugarek, 2011. "Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 427-439, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    2. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    3. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    4. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    5. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    6. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    7. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    8. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    9. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    10. Odetayo, Babatunde & MacCormack, John & Rosehart, William D. & Zareipour, Hamidreza, 2017. "A sequential planning approach for Distributed generation and natural gas networks," Energy, Elsevier, vol. 127(C), pages 428-437.
    11. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    12. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    13. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    14. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    15. Jana, R.K. & Sharma, Dinesh K. & Chakraborty, B., 2016. "A hybrid probabilistic fuzzy goal programming approach for agricultural decision-making," International Journal of Production Economics, Elsevier, vol. 173(C), pages 134-141.
    16. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    18. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    19. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    20. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:4:d:10.1007_s10898-017-0501-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.