IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-9586-5_17.html
   My bibliography  Save this book chapter

Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae

In: Stochastic Optimization Methods in Finance and Energy

Author

Listed:
  • René Henrion

    (Weierstrass Institute for Applied Analysis and Stochastics)

  • Cyrille Strugarek

    (Credit Portfolio Management, Calyon Credit Agricole CIB)

Abstract

We consider the convexity of chance constraints with random right-hand side. While this issue is well understood (thanks to Prékopa’s Theorem) if the mapping operating on the decision vector is componentwise concave, things become more delicate when relaxing the concavity property. In an earlier paper, the significantly weaker r-concavity concept could be exploited, in order to derive eventual convexity (starting from a certain probability level) for feasible sets defined by chance constraints. This result heavily relied on the assumption of the random vector having independent components. A generalization to arbitrary multivariate distributions is all but straightforward. The aim of this chapter is to derive the same convexity result for distributions modeled via copulae. In this way, correlated components are admitted, but a certain correlation structure is imposed through the choice of the copula. We identify a class of copulae admitting eventually convex chance constraints.

Suggested Citation

  • René Henrion & Cyrille Strugarek, 2011. "Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 427-439, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-9586-5_17
    DOI: 10.1007/978-1-4419-9586-5_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang Nam Nguyen & Abdel Lisser & Vikas Vikram Singh, 2022. "Random Games Under Elliptically Distributed Dependent Joint Chance Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 249-264, October.
    2. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    3. Martin Branda & Štěpán Hájek, 2017. "Flow-based formulations for operational fixed interval scheduling problems with random delays," Computational Management Science, Springer, vol. 14(1), pages 161-177, January.
    4. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    5. Peng, Shen & Maggioni, Francesca & Lisser, Abdel, 2022. "Bounds for probabilistic programming with application to a blend planning problem," European Journal of Operational Research, Elsevier, vol. 297(3), pages 964-976.
    6. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    7. Michel Minoux & Riadh Zorgati, 2017. "Global probability maximization for a Gaussian bilateral inequality in polynomial time," Journal of Global Optimization, Springer, vol. 68(4), pages 879-898, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-9586-5_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.